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OpenLMIS (Open Logistics Management Information System) is software for a shared, open source solution
for managing medical commodity distribution in low- and middle-income countries. For more information, see
OpenLMIS.org.
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CHAPTER 1

Contents:

1.1 Release Notes

To download a release, please visit GitHub.

1.1.1 3.3.1 Patch Release Notes - 17 July 2018

Status: Stable with disclaimer

3.3.1 Patch release is recommended for users of OpenLMIS version 3.3.0 because the patch inclues a bug fix for
requisition statuses when saved concurrently. Disclaimer: The 3.3.1 Patch release does not contain any known blocking
bugs. Full regression testing and manual performance testing was not conducted as part of the patch release.

Patch Release Notes

3.3.1 Patch Release contains the bug fix for - OLMIS-4728.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

Compatible with OpenLMIS 3.3.0

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.
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Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.3.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.3.1

Known Bugs

No known additional bugs were included in this patch release. Bug reports are collected in Jira for troubleshooting,
analysis and resolution on an ongoing basis. See OpenLMIS 3.3.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

No new features were introduced with this patch release.

Changes to Existing Functionality

Version 3.3.1 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

• OLMIS-4728: Requisition’s properties can be overwritten when saved concurrently.

Performance

No manual performance testing was conducted for this patch release.

Test Coverage

Manual regression tests were conducted using a set of 30 Zephyr tests tracked in Jira. One bug was found and resolved
during testing. See the test cycle for all regression test case executions for this patch release: 3.3.1 Patch Release Test
Plan and Execution.

Component Version Numbers

Version 3.3.1 of the Reference Distribution contains the following components and versions listed below. The Ref-
erence Distribution bundles these components together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.
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http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.3.1
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.3%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/browse/OLMIS-4728
https://openlmis.atlassian.net/wiki/spaces/OP/pages/413991014/Patch+Release+Test+Plan+v3.3.1
https://openlmis.atlassian.net/wiki/spaces/OP/pages/413991014/Patch+Release+Test+Plan+v3.3.1
http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
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Auth Service 3.2.0

CCE Service 1.0.0

Fulfillment Service 7.0.0

Notification Service 3.0.5

Reference Data Service 10.0.0

Reference UI 5.0.7

The Reference UI (https://github.com/OpenLMIS/openlmis-reference-ui/) is the web-based user interface for the
OpenLMIS Reference Distribution. This user interface is a single page web application that is optimized for offline
and low-bandwidth environments. The Reference UI is compiled together from module UI modules using Docker
compose along with the OpenLMIS dev-ui. UI modules included in the Reference UI are:

auth-ui 6.1.0

cce-ui 1.0.0

fulfillment-ui 6.0.0

referencedata-ui 5.3.0

report-ui 5.0.5

requisition-ui 6.1.0

stockmanagement-ui 1.1.0

ui-components 5.3.0

ui-layout 5.1.0

Dev UI v7

Report Service 1.0.1

This service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report: the Facility Assignment Configuration Errors report
(OLMIS-2760).

Additional built-in reports in OpenLMIS 3.3.1 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.0.1 version to build additional reports.

1.1. Release Notes 5

https://github.com/OpenLMIS/openlmis-reference-ui/
https://openlmis.atlassian.net/browse/OLMIS-2760


OpenLMIS Documentation, Release 3.0

Requisition Service 6.0.0

Stock Management 3.0.0

Service Util 3.1.0

1.1.2 3.3.0 Release Notes - 27 April 2018

Status: Stable

3.3.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.3.0 release of OpenLMIS! It is another major milestone
in the version 3 re-architecture that allows more functionality to be shared among the community of OpenLMIS
implementers.

3.3.0 includes a wide range of new features and functionality. The majority of the features were defined as the Minimal
Viable Product (MVP), or minimum feature set, to support countries in managing their immunization supply chain by
a group of key immunization stakeholders and OpenLMIS community members. Key features include managing cold
chain equipment (CCE) inventory, integrating with a Remote Temperature Monitoring (RTM) platform, calculating
reorder amounts based on targets, fulfilling orders, and receiving commodities into inventory based on shipments. See
the New Features section for details.

For a full list of features and bug-fixes since 3.2.1, see OpenLMIS 3.3.0 Jira tickets.

For information about future planned releases, see the Living Product Roadmap. Pull requests and contributions are
welcome.

Compatibility

The requisition service introduced, OLMIS-3929: View and edit multiple requisition templates per program, which
requires a manual data migration explained here.

The fulfillment service has a major release due to the additional features in fulfilling orders within OpenLMIS. Please
review the fulfillment service changelog in detail to ensure a clear understanding of the breaking changes.

The reference data service uses new rights associated with the new proof of delivery functionality. Please review the
changlog for the Reference data service in detail to ensure a clear understanding of the breaking changes related to
rights.

Batch Requisition Approval: The Batch Approval screen, which was improved in OpenLMIS 3.2.1, is still not
officially supported. The UI screen is disabled by default. Implementations can override the code in their local
customizations in order to use the screen. Further performance improvements are needed before the screen is officially
supported. See OLMIS-3182 and the tickets linked to it for details.

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.
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https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.3%20and%20type!%3DTest%20and%20type!%3DEpic%20ORDER%20BY%20%22Epic%20Link%22%20asc%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html
https://openlmis.atlassian.net/browse/OLMIS-3929
https://github.com/OpenLMIS/openlmis-requisition-template-migration
https://openlmis.atlassian.net/browse/OLMIS-3182
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Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.3.0 from OpenLMIS 3.0.x or 3.1.x (without first upgrading to 3.2.x), please
review the 3.2.0 Release Notes for important compatibility information about a required PostgreSQL extension and
data migrations.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.3.0

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution on an ongoing basis. See OpenLMIS
3.3.0 Bugs for the current list of known bugs.

To report a bug, see Reporting Bugs.

New Features

OpenLMIS 3.3.0 contains the following features, the majority are specific to the Vaccine Module MVP Features, were
completed by the OpenLMIS development team:

• Vaccine stock based requisitions that allow users to populate a requisition based on current stock levels and
forecasted demand targets or ideal stock amounts.

• Enhancements to support stock management for vaccines.

• Order fulfillment, sometimes referred to as the process of resupplying supervised facilities. Includes support
for configuring some facilities to have orders fulfilled within OpenLMIS and others sending orders to external
suppliers like a National Store or third party supplier. Supports using the ideal product model, ordering using
commodity types and fulfilling using TradeItems, to enable end-to-end visibility.

• Receiving stock into inventory, using an electronic Proof of Delivery based on the shipment details created in
OpenLMIS.

• Forecasting and Estimation features to upload forecasted demand targets and use those targets to calculate
reorder amounts.

• Official release of the Cold Chain Equipment (CCE) service and includes a new feature displaying active alerts
on specific pieces of equipment inventory using a standards based interoperability with a Remote Temperature
Monitoring (RTM) platform.

• Administration screens included assigning requisition templates to facility types within a program, view and
create facility types, and manage API keys.

• The analytics infrastructure and DISC indicators were developed and deployed in a new open-source stack. By
the 3.3 release, this technology infrastructure is not deployed within our dockerized microservice architecture.
We can provide access to the demo environment for showcasing and will focus on deploying in docker for the
next release.

The following Pull Requests were contributed by community members:

• Reference Data and Reference Data UI OLMIS-3448

• Reference Data OLMIS-4337

1.1. Release Notes 7

http://docs.openlmis.org/en/latest/releases/openlmis-ref-distro-v3.2.0.html
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017
https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.3.0
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.3%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
https://openlmis.atlassian.net/issues/?jql=project%3DOLMIS%20and%20type%3DBug%20and%20affectedVersion%3D3.3%20order%20by%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
http://docs.openlmis.org/en/latest/contribute/contributionGuide.html#reporting-bugs
https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/browse/OLMIS-4059
https://openlmis.atlassian.net/browse/OLMIS-1293
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670474/Local+Fulfillment
https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670483/Receiving+stock
https://openlmis.atlassian.net/browse/OLMIS-1294
https://openlmis.atlassian.net/browse/OLMIS-4067
https://openlmis.atlassian.net/browse/OLMIS-3448
https://openlmis.atlassian.net/browse/OLMIS-4337
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• Requisition OLMIS-4383

Changes to Existing Functionality

Version 3.3.0 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

• OLMIS-3949: The redesign of emergency requisitions made large UI and API changes. Emergency requisi-
tions now use a simplified template with limited columns. Please ensure to review all relevant documentation
to understand the decision making, which went through the product committee, and major UI changes to alert
relevant users.

• OLMIS-3929: View and edit multiple requisition templates per program.

• OLMIS-3166: Add user control for AppCache. Users can see their build number and update their web page
application to the latest build.

• OLMIS-3877: UI filter component is consistent across pages.

• OLMIS-4026: Changed table styles to support order fulfillment complexity.

See all 3.3.0 issues tagged ‘UIChange’ in Jira.

API Changes

Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

• Requisition service has a major release, v6.0.0, due to the redesign of emergency requisitions. See the Requisi-
tion changelog for details.

• Fulfillment service has a major release, v7.0.0, due to significant changes in the data model for orders, shipments
and proofs of delivery. See the Fulfillment changelog for details.

• Reference data service has a major release, v10.0.0, due to changes for pagination, filtering and rights. See the
Reference data changelog for details.

• Stock management service has a major release, v3.0.0, due to significant changes to stock events and physical
inventory data. See the Stock management changelog for details.

Performance

OpenLMIS conducted manual performance tests of the same user workflows with the same test data we used in testing
v3.2.1 to establish that last-mile performance characteristics have been retained at a minimum. For details on the
test results and process, please see this wiki page for details. There are minor improvements in the sync, submit,
authorize and single approve within the requisition service. For more details about the specific work done to improve
performance for 3.3.0, please reference this list of tasks.

The following chart displays the 3.3.0 UI loading times in seconds for both 3.2.1 and 3.3.0 using the same test data.
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https://openlmis.atlassian.net/browse/OLMIS-4387
https://openlmis.atlassian.net/browse/OLMIS-3949
https://openlmis.atlassian.net/wiki/spaces/OP/pages/199655438/PC+January+30+2018
https://openlmis.atlassian.net/browse/OLMIS-3929
https://openlmis.atlassian.net/browse/OLMIS-3166
https://openlmis.atlassian.net/browse/OLMIS-3877
https://openlmis.atlassian.net/browse/OLMIS-4026
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.3%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/Performance+Metrics
https://openlmis.atlassian.net/issues/?jql=project%20%3D%20OLMIS%20AND%20issuetype%20%3D%20Task%20AND%20status%20%3D%20Done%20AND%20fixVersion%20%3D%203.3%20AND%20labels%20%3D%20Performance%20AND%20text%20~%20%22performance%22%20ORDER%20BY%20priority%20DESC%2C%20status%20ASC%2C%20key%20ASC
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Test Coverage

OpenLMIS 3.3.0 is the second release using the new Release Candidate process. As part of this process, a full manual
regression test cycle was conducted, and multiple release candidates were published to address critical bugs before
releasing the final version 3.3.0.

Manual tests were conducted using a set of 136 Zephyr tests tracked in Jira. A total of 50 bugs were found during
testing. The full set of tests were executed on the third Release Candidate (RC3). With previous release candidates
(RC1 and RC2), only the first phase of testing was conducted. See the spreadsheet of all regression test executions for
this release: 3.3.0-regression-tests.csv.

OpenLMIS 3.3.0 also includes a large set of automated tests. There are multiple types of tests, including Unit Tests,
Integration, Component, Contract and End-to-End. These tests exist in the API services in Java as well as in the
JavaScript UI web application. See the Testing Guide.

For OpenLMIS 3.3.0, here are a few key statistics on automated tests:

• There are 2,665 unit tests in the API services in Java, not including other types of tests nor tests in the Javascript
UI application. Sonar counts unit tests on each Java component.

• Test coverage is over 60% for all components, both Java and JavaScript, and is over 80% for many components.
Sonar tracks test coverage and fails

quality gates if developers contribute new code with less than 80% coverage.

All of the automated tests, both Java and Javascript tests of all types, are passing as of the time of the release. Any
failing test would stop the build and block a release.

Further advances in automated testing are still on the horizon for future releases of OpenLMIS:

• Automated performance tests: There is already an automated test tool that measures the speed of API endpoints
with a large set of performance test data. However, not all tests pass and there is not an established baseline
for performance/speed of all areas of the system. Achieving this will greatly improve the objective means for
tracking and improving performance.

• End-to-end testing: There is already an end-to-end testing toolset. However, coverage is very low. The addition
of more end-to-end automated tests can reduce the manual test effort that is currently required for each release.
It can help developers identify and fix regressions so the community can move towards a “continuous delivery”
release process.

1.1. Release Notes 9

http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html#release-process
https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/docs/source/releases/3.3.0-regression-tests.csv
http://docs.openlmis.org/en/latest/conventions/testing.html
http://sonar.openlmis.org/projects
http://sonar.openlmis.org/projects
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All Changes by Component

Version 3.3.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.2.0

Source: Auth CHANGELOG

CCE Service 1.0.0

This is the first stable release of openlmis-cce.

Source: CCE CHANGELOG

Fulfillment Service 7.0.0

Source: Fulfillment CHANGELOG

Notification Service 3.0.5

Source: Notification CHANGELOG

Reference Data Service 10.0.0

Source: ReferenceData CHANGELOG

Reference UI 5.0.6

The Reference UI (https://github.com/OpenLMIS/openlmis-reference-ui/) is the web-based user interface for the
OpenLMIS Reference Distribution. This user interface is a single page web application that is optimized for offline
and low-bandwidth environments. The Reference UI is compiled together from module UI modules using Docker
compose along with the OpenLMIS dev-ui. UI modules included in the Reference UI are:

auth-ui 6.1.0

See openlmis-auth-ui CHANGELOG

cce-ui 1.0.0

This is the first stable release of openlmis-cce-ui; it provides CCE inventory management and administration screens
that work with the openlmis-cce service APIs.

See: openlmis-cce-ui CHANGELOG
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http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html
https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-reference-ui/
https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-cce-ui/blob/master/CHANGELOG.md
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fulfillment-ui 6.0.0

See openlmis-fulfillment-ui CHANGELOG

referencedata-ui 5.3.0

See openlmis-referencedata-ui CHANGELOG

report-ui 5.0.5

See openlmis-report-ui CHANGELOG

requisition-ui 5.3.1

See openlmis-requisition-ui CHANGELOG

stockmanagement-ui 1.1.0

See openlmis-ui-components CHANGELOG

ui-components 5.3.0

See openlmis-ui-components CHANGELOG

ui-layout 5.1.0

See openlmis-ui-layout CHANGELOG

Dev UI v7

The Dev UI developer tooling has advanced to v7.

Report Service 1.0.1

This service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report: the Facility Assignment Configuration Errors report
(OLMIS-2760).

Additional built-in reports in OpenLMIS 3.3.0 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.0.1 version to build additional reports.

Source: Report CHANGELOG

1.1. Release Notes 11

https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/dev-ui
https://openlmis.atlassian.net/browse/OLMIS-2760
https://github.com/OpenLMIS/openlmis-report/blob/master/CHANGELOG.md
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Requisition Service 6.0.0

Source: Requisition CHANGELOG

Stock Management 3.0.0

Source: Stock Management CHANGELOG

Service Util 3.1.0

We now use an updated library for shared Java code called service-util.

Source: Report CHANGELOG

Components with No Changes

Other tooling components have not changed, including: the logging service, the Consul-friendly distribution of nginx,
the docker Postgres 9.6-postgis image, and the docker scalyr image.

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on our
committees (Governance, Product and Technical), requesting improvements, suggesting features and writing code and
documentation. Please visit our GitHub repos to see the list of individual contributors on the OpenLMIS codebase. If
anyone who contributed in GitHub is missing, please contact the Community Manager.

Thanks to the Malawi implementation team who has continued to contribute a number of changes that have global
shared benefit.

Further Resources

We are excited to announce the release of the first iteration of the Implementer Toolkit on the OpenLMIS website.
Learn more about the OpenLMIS Community and how to get involved!

1.1.3 3.2.1 Release Notes - 15 November 2017

Status: Stable

3.2.1 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The release of 3.2.1 is primarily a bug-fix and performance release, with over 40 bugs fixed and over 20 other
improvements since 3.2.0 including major improvements in performance.

This release does include some new features; see the New Features section below.

See the Living Product Roadmap for information about future planned releases. Pull requests and contributions are
welcome.
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https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement/blob/master/CHANGELOG.md
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Compatibility

Important! Stock Management data migration: OpenLMIS 3.2.1 introduces a new constraint that forces the adjust-
ment reasons to be unique within each requisition line item. This means that it will no longer be possible to have two
“expired” adjustments in a single product, eg. Expired: 20 and Expired: 30. It will still be possible to have different
adjustment reasons, eg. Expired: 20 and Lost: 30. The UI does not allow users to add the same adjustment reason
twice starting with OpenLMIS 3.2.1. Users should now provide a total value for a given adjustment reason.

Due to this change, it is necessary for any existing OpenLMIS implementations to migrate their stock adjustments
data to merge any duplicates. Implementations can do this manually before upgrading to 3.2.1, otherwise OpenLMIS
3.2.1 will apply a default migration automatically. The default migration automatically merge the duplicates by adding
together the quantities from the same adjustment reasons in each requisition line item. For instance, if a line item had
two adjustments with the same reason (Expired: 20 and Expired: 30), this will be replaced by a single adjustment
with the total (Expired: 50). We highly recommend that all implementations review their duplicate stock adjustments
manually and determine how they should be merged prior to upgrading to 3.2.1. The default migration may not be
valid for all the cases that can occur in real-world data.

Batch Requisition Approval: During work on OpenLMIS 3.2.1, further improvements to the Batch Approval screen
were made, but the feature is still not officially supported. The UI screen is disabled. Implementations can override
the code in their local customizations in order to use the screen. Further changes to the screen are expected in future
releases before it is officially supported. See OLMIS-3182 for more info.

Backwards-Compatible Except As Noted

Unless noted here, all other changes to OpenLMIS 3.x are backwards-compatible. All changes to data or schemas
include automated migrations from previous versions back to version 3.0.1. All new or altered functionality is listed
in the sections below for New Features and Changes to Existing Functionality.

Upgrading from Older Versions

If you are upgrading to OpenLMIS 3.2.1 from OpenLMIS 3.0.x or 3.1.x, please review the 3.2.0 Release Notes for
important compatibility information.

For information about upgrade paths from OpenLMIS 1 and 2 to version 3, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.2.1

Known Bugs

Bug reports are collected in Jira for troubleshooting, analysis and resolution. See OpenLMIS 3.2.1 Bugs.

To report a bug, see Reporting Bugs.

New Features

OpenLMIS 3.2.1 contains these new features:

• Facility administration screens now support adding and editing facilities.

• User administration screens now provide filtering and more password reset options.
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• Demo data is significantly expanded, including for use in contract tests and performance tests.

• Vaccine MVP features including Ideal Stock Amount (ISA) management, printing of physical inventory counts
and additional work in Cold Chain Equipment (CCE) tracking (CCE features are released in a Beta version
which is not included in the 3.2.1 release).

• Contributions from the Malawi implementation, including a new Extension Point for customizing Order Num-
bers and deleting previously skipped requisitions.

Changes to Existing Functionality

Version 3.2.1 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:

• OLMIS-3233: Ability to delete previously skipped Requisitions.

• OLMIS-3076: DataIntegrityViolationException when trying to remove previous requisition / Average Period
Consumption should not calculate using Emergency requisition data. This change updates the rules about when
it is possible to delete older requisitions. It also changes how newer requisitions use past data to compute the
Average Period Consumption.

• OLMIS-3246: Ability to hide special reasons from Total Losses and Adjustments. This feature provides a new
configuration option so that administrators can hide selected reasons from end-users.

• OLMIS-3221 and OLMIS-3222: View Orders filtering by period start and end dates.

• OLMIS-2700: View Requisition enhancements. This includes new sort order controls and makes the Date
Initiated visible in the table.

• OLMIS-3449: Explanation field on Non-Full Supply is no longer mandatory.

See all 3.2.1 issues tagged ‘UIChange’ in Jira.

API Changes

Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

• OLMIS-3254: Unrestrict GET operations on certain reference data resources. This makes certain information
(EG, lists of all facilities and orderables) available for any user with a valid login token.

• OLMIS-3116: User DTO now returns home facility UUID instead of Facility object.

• OLMIS-3105: User DTO now returns UUIDs instead of codes for role assignments.

• OLMIS-3293: Paginate search facilityTypeApprovedProducts and made endpoint RESTful.

• OLMIS-2732: Stock Management Physical Inventory API was redesigned to be RESTful (during work on this
ticket for print support).

Performance Improvements

Targeted performance improvements were made in the RESTful API services as well as in the UI application. The
improvements were chosen based on testing using a new performance data set and by manually testing with simulated
conditions (EG, network set to Slow 3G).

This chart shows a side-by-side comparison of the loading times for different actions in the UI in version 3.2.1 (green)
compared to testing done in early October 2017 before improvements (blue).

14 Chapter 1. Contents:

https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP
https://openlmis.atlassian.net/browse/OLMIS-3233
https://openlmis.atlassian.net/browse/OLMIS-3076
https://openlmis.atlassian.net/browse/OLMIS-3246
https://openlmis.atlassian.net/browse/OLMIS-3221
https://openlmis.atlassian.net/browse/OLMIS-3222
https://openlmis.atlassian.net/browse/OLMIS-2700
https://openlmis.atlassian.net/browse/OLMIS-3449
https://openlmis.atlassian.net/issues/?jql=status%3DDone%20AND%20project%3DOLMIS%20AND%20fixVersion%3D3.2.1%20and%20type!%3DTest%20and%20type!%3DEpic%20and%20labels%20IN%20(UIChange)%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC
https://openlmis.atlassian.net/browse/OLMIS-3254
https://openlmis.atlassian.net/browse/OLMIS-3116
https://openlmis.atlassian.net/browse/OLMIS-3105
https://openlmis.atlassian.net/browse/OLMIS-3293
https://openlmis.atlassian.net/browse/OLMIS-2732


OpenLMIS Documentation, Release 3.0

These loading times are measured from the UI app with network set to Slow 3G and CPU throttled. The data was
gathered manually by timing the application while running the new performance data set.

Top Areas Improved in 3.2.1:

• Convert to Order has dramatically improved loading times (now under 20 seconds): OLMIS-3318 and OLMIS-
3320.

• Requisition Approve is significantly faster (now under 15 seconds): OLMIS-3346.

• Requisition Initiate is faster. OLMIS-3332 and OLMIS-3322.

• Requisition Submit and Authorize are also faster (improved by those same tickets).

• Batch Approve performs better scrolling through large numbers of products.

For more info about the data and results, see: https://openlmis.atlassian.net/wiki/spaces/OP/pages/116949318/
Performance+Metrics

Test Coverage

OpenLMIS 3.2.1 is the first release using the new Release Candidate process. As part of this process, a full manual
regression test cycle was conducted, and multiple release candidates were published to address critical bugs before
releasing the final version 3.2.1.

Manual tests were conducted using a set of 110 Zephyr tests tracked in Jira. A total of 34 bugs were found during
testing. The full set of 110 tests was executed on the first Release Candidate (RC1). With subsequent release candidates
(RC2 and RC3), a smaller set of tests were re-executed based on which components were changed. In total, 34 bugs
were found from all rounds of manual testing for 3.2.1. See a spreadsheet of all regression test executions for this
release: 3.2.1-regression-tests.csv.

The automated tests (unit tests, integration tests, and contract tests) were 100% passing at the time of the 3.2.1 release.
Automated test coverage is tracked in Sonar.

All Changes by Component

Version 3.2.1 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
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component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.1.1

Bug fixes added in a backwards-compatible manner:

• OLMIS-3119: Fixed issue with TOKEN_DURATION variable being ingored, which in reality was an issue
with set up of the Spring context and autowiring not working as expected.

• OLMIS-3357: Reset email will not be sent when user is created or updated.

Source: Auth CHANGELOG

CCE Service 1.0.0-beta

This component is a beta of new Cold Chain Equipment functionality to support Vaccines in medical supply chains.
This API service component has an accompanying beta CCE UI component.

For details, see the functional documentation: Cold Chain Equipment Management.

Warning: This is a beta component, and is not yet intended for production use. APIs and functionality are still subject
to change until the official release.

Fulfillment Service 6.1.0

New functionality added in a backwards-compatible manner:

• OLMIS-3221: Added period start and end dates parameters to the order search endpoint.

Improvements added in a backwards-compatible manner:

• OLMIS-3112: Added OrderNumberGenerator extension point. Changed the default implementation to provide
8 character, base36 order numbers.

Source: Fulfillment CHANGELOG

Notification Service 3.0.4

Bug fixes, security and performance improvements (backwards-compatible):

• OLMIS-3394: Added notification request validator. From, to, subject and content fields are required, and if one
of them will be empty the endpoint will return response with 400 status code and error message.

Source: Notification CHANGELOG

Reference Data Service 9.0.0

Breaking changes:

• OLMIS-3116: User DTO now returns home facility UUID instead of Facility object.

• OLMIS-3105: User DTO now returns UUIDs instead of codes for role assignments.

• OLMIS-3293: Paginate search facilityTypeApprovedProducts and made endpoint RESTful.
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New functionality added in a backwards-compatible manner:

• OLMIS-2892: Added ideal stock amounts model.

• OLMIS-2966: Create User Rights for Managing Ideal Stock Amounts.

• OLMIS-3227: Added GET Ideal Stock Amounts endpoint with download csv functionality.

• OLMIS-3022: Refresh right assignments on role-based access control (RBAC) structural changes.

• OLMIS-3263: Added new ISA dto with links to nested objects.

• OLMIS-396: Added ISA upload endpoint.

• OLMIS-3200: Designed and added new demo data for EPI (Vaccines) program.

• OLMIS-3254: Un-restrict most GET APIs for most resources.

• OLMIS-3351: Added search by ids to /api/facilities endpoint.

• OLMIS-3512: Added code validation for supervisory node create and update endpoints.

Bug fixes, security and performance improvements, also backwards-compatible:

• OLMIS-2857: Refactored user search repository method to user database pagination and sorting.

• OLMIS-2913: add DIVO user and assign to Inventory Manager role for SN1 and SN2.

• OLMIS-3146: added PROGRAMS_MANAGE right and enforce it on CUD endpoints.

• OLMIS-3209: Fixed problem with parsing orderable DTO when it contains several program orderables.

• OLMIS-3290: Fixed searching Orderables by code and name.

• OLMIS-3291: Fixed searching RequisitionGroups by supervisoryNode.

• OLMIS-3346: Decreased number of database calls to retrieve Facility Type Approved Products.

Source: ReferenceData CHANGELOG

Reference UI 5.0.4

The Reference UI (https://github.com/OpenLMIS/openlmis-reference-ui/) is the web-based user interface for the
OpenLMIS Reference Distribution. This user interface is a single page web application that is optimized for offline
and low-bandwidth environments. The Reference UI is compiled together from module UI modules using Docker
compose along with the OpenLMIS dev-ui. UI modules included in the Reference UI are:

auth-ui 6.0.0

New functionality:

• OLMIS-2956: Simplified login and authorization services by removing “user rights” functionality and moving
to openlmis-referencedata-ui.

New functionality added in backwards-compatiable manner:

• OLMIS-3141: After user resets their password, they are redirected to the login screen.

• OLMIS-3283: Added a “Show password” option on password reset screen.

Bug fixes which are backwards-compatible:

• OLMIS-3140: Added loading icon on forgot password modal.

Improvements:
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• Updated dev-ui version to 6.

See openlmis-auth-ui CHANGELOG

cce-ui 1.0.0-beta

Beta release of CCE UI. See CCE service component above for more info.

fulfillment-ui 5.1.0

New functionality added in a backwards-compatible manner:

• OLMIS-3222: Added period start and end dates parameters to the order view screen

Bug fixes:

• OLMIS-3159: Fixed facility select loosing state no POD manage page.

• OLMIS-3285: Fixed broken pagination on Manage Proofs of Delivery page.

• OLMIS-3540: Now Manage POD displays items with IN_ROUTE status.

Improvements:

• Updated dev-ui version to 6.

See openlmis-fulfillment-ui CHANGELOG

referencedata-ui 5.2.2

New features:

• OLMIS-3153: Added facilityOperatorsService for communicating with the facilityOperators endpoints

• Extended facilityService with the ability to save facility

• OLMIS-3154: Changed facility view to edit screen.

• OLMIS-3228: Create Download Current ISA Values page.

• OLMIS-2217: Added ability to send reset password email.

• OLMIS-396: Added upload functionality to manage ISA screen.

Improvements:

• OLMIS-2857: Added username filter to user list screen.

• OLMIS-3283: Added a “Show password” option on password reset screen.

• OLMIS-3296: Reworked facility-program select component to use cached rograms, minimal facilities and per-
mission strings.

• Updated dev-ui version to 6.

Bug fixes:

• Added openlmis-offline as a dependency to the referencedata-program module.

• OLMIS-3291: Fixed incorrect state name.

• OLMIS-3499: Fixed changing username in title header.

See openlmis-referencedata-ui CHANGELOG
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report-ui 5.0.4

Improvements:

• Updated dev-ui version to 6.

See openlmis-report-ui CHANGELOG

requisition-ui 5.2.0

Improvements:

• OLMIS-2956: Removed UserRightFactory from requisition-initiate module, and replaced with permissionSer-
vice.

• OLMIS-3294: Added loading modal after the approval is finished.

• OLMIS-2700: Added date initiated column and sorting to the View Requisitions table. Removed date authorized
and date approved.

• OLMIS-3181: Added front-end validation to the requisition batch approval screen.

• OLMIS-3233: Added ability to delete requisitions with “skipped” status.

• OLMIS-3246: Added ‘show’ field to reason assignments.

• OLMIS-3471: Explanation field on Non Full supply tab is no longer mandatory.

• OLMIS-3318: Added requisitions caching to the Convert to Order screen.

• Updated dev-ui version to 6.

Bug fixes:

• OLMIS-3151: Fixed automatically resolving mathematical error with adjustments.

• OLMIS-3255: Fixed auto-select the “Supplying facility” on Requisition Convert to Order.

• OLMIS-3296: Reworked facility-program select component to use cached programs, minimal facilities and
permission strings.

• OLMIS-3322: Added storing initiated requisition in offline cache.

See openlmis-requisition-ui CHANGELOG

stockmanagement-ui 1.0.1

New functionality that are backwards-compatible:

• OLMIS-2732: Print submitted physical inventory.

Improvements:

• OLMIS-3246: Added support for hidden stock adjustment reasons.

• OLMIS-3296: Reworked facility-program select component to use cached rograms, minimal facilities and per-
mission strings.

• Updated dev-ui version to 6.

See openlmis-ui-components CHANGELOG
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ui-components 5.2.0

ui-components 5.2.0 contains significant new functionality including virtual table scrolling for improved performance
of large tables, a new sort control, PouchDB support, improved Offline detection and much more.

New functionality added in a backwards-compatible manner:

• OLMIS-3182: Added openlmis-table-pane that implements high performance table rendering for large data
tables.

• OLMIS-2655: Added sort control component.

• OLMIS-3462: Added debounce option for inputs.

• OLMIS-3199: Added PouchDB.

New functionality:

• Added modalStateProvider to ease modal state defining

Bug fixes:

• OLMIS-3248: Added missing message for number validation.

• OLMIS-3170: Fixed auto resize input controls.

• OLMIS-3500: Fixed a bug with background changing color when scrolling.

Improvements:

• OLMIS-3114: Improved table keyboard accessibility. Made table scroll if focused cell is off screen. Wrapped
checkboxes in table cells automatically if they don’t have a label.

• Modals now have backdrop and escape close actions disabled by default. Can by overridden by adding ‘back-
drop’ and ‘static’ properties to the dialog definition.

• Extended stateTrackerService with the ability to override previous state parameters and pass state options.

• Updated dev-ui version to 6.

• OLMIS-3359: Improved the way offline is detected.

See openlmis-ui-components CHANGELOG

ui-layout:5.0.3

New features:

• OLMIS-2956: Added loadingService with $stateChangeStart interceptor

Improvements:

• OLMIS-3303: Added warning for users with Javascript disabled

• Updated dev-ui version to 6.

See openlmis-ui-layout CHANGELOG

Dev UI

The Dev UI developer tooling has advanced to v6.
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Report Service 1.0.0

This new service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report: the Facility Assignment Configuration Errors report
(OLMIS-2760).

Additional built-in reports in OpenLMIS 3.2.1 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Warning: Developers should take note that the design of this service will be changing with future releases. Developers
and implementers are discouraged from using this 1.0.0 version to build additional reports.

Changes since Report Service 1.0.0-beta:

• OLMIS-3116: Change user home facility from Facility DTO to UUID

Requisition Service 5.1.0

Improvements:

• OLMIS-3544: Added sort to requisition search endpoint.

• OLMIS-3246: Added support for hidden stock adjustment reasons. Also added validations to ensure all special
reasons configured for Requisition service to use are valid reasons.

• OLMIS-3233: Added ability to delete requisitions with Skipped status.

• OLMIS-3351: Improve performance of batch retrieveAll.

Bug fixes added in a backwards-compatible manner:

• OLMIS-3126: Fix unable to batch save when skip is disabled in Requisition Template.

• OLMIS-3215: Do not allow for status change (submit/authorize/approve) when period end after today.

• OLMIS-3076: Exclude emergency from previous requisitions, remove regular requisition only if it is newest.

• OLMIS-3320: Improved requisitions for convert endpoint performance.

• OLMIS-3404: Added validation for sending reasons in line item adjustments that are not present on available
reason list in requisition.

Improve demo data:

• OLMIS-3202: Modified requisition template for EM program to match Malawi example columns.

Source: Requisition CHANGELOG

Stock Management 2.0.0

Contract breaking changes:

• OLMIS-2732: Print submitted physical inventory. During work on this ticket physical inventory API was
redesigned to be RESTful.

New functionality that are backwards-compatible:

• OLMIS-3246: Add ability to configure hidden stock adjustment reasons. Updated demo data. Also impacts
Requisition and UI.

Bug fixes, security and performance improvements, also backwards-compatible:

• OLMIS-3148: Added missing messages for error keys
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• OLMIS-3346: Increase performance of POST /stockEvents endpoint by reducing db calls and use lazy-loading
in the stock event process context. Also changed logic for notification of stockout to asynchronous.

Source: Stock Management CHANGELOG

Components with No Changes

Other tooling components have not changed, including: the logging service, the Consul-friendly distribution of nginx,
the docker Postgres 9.6-postgis image, the docker rsyslog image, the docker scalyr image, and a library for shared Java
code called service-util.

Contributions

Thanks to the Malawi implementation team who has contributed a number of pull requests to add functionality and
customization in ways that have global shared benefit.

For a detailed list of contributors, see the Release Notes for OpenLMIS 3.2.0, 3.1.0 and 3.0.0.

Further Resources

Learn more about the OpenLMIS Community and how to get involved!

1.1.4 3.2.0 Release Notes - 1 September 2017

Status: Stable

3.2.0 is a stable release, and all users of OpenLMIS version 3 are encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.2.0 release of OpenLMIS!

This release represents another major milestone in the version 3 series, which is the result of a software re-architecture
that allows more functionality to be shared among the community of OpenLMIS users.

3.2.0 includes new features in stock management, new administrative screens, targeted performance improve-
ments and a beta version of the Cold Chain Equipment (CCE) service. It also contains contributions in the form of
pull requests from the Malawi implementation, a national implementation that is now live on OpenLMIS version 3.

3.2.0 represents the first milestone towards the Vaccines MVP feature set.

After 3.2.0, there are further planned milestone releases and patch releases that will add more features to support
Vaccine/EPI programs and continue making OpenLMIS a full-featured electronic logistics management information
system (LMIS). Please reference the Living Product Roadmap for the upcoming release priorities. Patch releases will
continue to include bug fixes, performance improvements, and pull requests are welcomed.

Compatibility

Important: If you are upgrading to 3.2.0 and using your own database solution (i.e. Amazon RDS), and not the
Postgres image in the Reference Distribution, please make sure you have the Postgres “uuid-ossp” extension installed.
If you are using the Postgres image from the Reference Distribution, then this extension will be installed for you once
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you pull the latest image from DockerHub. For more information about this change, please see the Postgres section,
and OLMIS-2681 under the Requisition Service section.

Important: 3.2.0 requires a data load script that must be run once in order to properly upgrade from an older
version 3 to 3.2.0. To run this script, add refresh-db to your Spring profile. An example: export
spring_profiles_active="refresh-db". You only need to run it the first time you start the server af-
ter upgrading to 3.2.0. For more information about this change, please see OLMIS-2811 under the Reference Data
Service section.

Important: 3.2.0 contains a data migration script that must be applied in order to upgrade from older version 3 to
3.2.0. This migration has its own GitHub repo and Docker image. See Adjustment Reason Migration. If you are
upgrading from any previous version of 3 to 3.2.0, see the README file which has specific instructions to apply this
migration. For background on this migration, see Connecting Stock and Requisition Services.

Important: Requisition Service now requires use of the Stock Management service. Data collected on requisition
forms uses adjustment reasons from the Stock service and submits data to stock cards. Certain columns on the Requi-
sition Template are now required. See Requisition Template Column Dependencies and Calculations as well as more
details in the Requisition component below.

All other changes are backwards-compatible. Any changes to data or schemas include automated migrations from
previous versions back to version 3.0.1. All new or altered functionality is listed in the sections below for New
Features and Changes to Existing Functionality.

For background information on OpenLMIS version 3’s micro-service architecture, extensions/customizations, and
upgrade paths for OpenLMIS versions 1 and 2, see the 3.0.0 Release Notes.

Download or View on GitHub

OpenLMIS Reference Distribution 3.2.0

New Features

This is a new section to flag all the new features.

• Stock Management: is not an official release and added a notification and new support for recording VVM
status.

• Administrative Screens: view supply lines, geogrphic zones, requisition groups and program settings.

• beta version of the new Cold Chain Equipment (CCE) service: which includes the support to upload a catalog
of cold chain equipment, add equpiment inventory (from the catalog) to facilities, and manually update the
functional status of that equipment. Review the wiki for details on the upcoming features.

• Performance: targeted improvements were made based on the first implementation’s use and results. Improve-
ments were made in server response times, which impacts load time, and memory utilization. In addition, new
tooling was introduced to provide the ability to track performance improvements and bottlenecks.

• Reference data

• Report service is now a separate component (see Report component below)

Changes to Existing Functionality

Version 3.2.0 contains changes that impact users of existing functionality. Please review these changes which may
require informing end-users and/or updating your customizations/extensions:
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• Requisition Service now uses Stock Management to handle adjustment reasons and to store stock data in stock
cards. This change does not alter end-user functionality in Requisitions, but it does allow users with Stock Man-
agement rights to begin viewing stock cards with data populated from requisitions. This change also requires a
data migration script to upgrade older version 3 systems to 3.2.0. (See Requisition component below.)

API Changes

Some APIs have changes to their contracts and/or their request-response data structures. These changes impact devel-
opers and systems integrating with OpenLMIS:

• Auth Service uses Authorization header instead of access_token (see Auth OLMIS-2871 below)

• Fulfillment Service and Requisition Service changed some dates from ZonedDateTime to LocalDate (see
OLMIS-2898 below)

• ReferenceData contains changes to Facility search and Geographic Search APIs (see component below)

• Requisition Service now requires use of the Stock Management service and connects to Stock service to handle
adjustment reasons and store data on stock cards (see Requisition component)

• Configuration settings endpoints (/api/settings) are no longer available; use environment variables to configure
the application (see OLMIS-2612 below)

• postgres database now requires one additional extension: uuid. It is already included in the postgres component
(see postgres component below), but those hosting on Amazon AWS RDS will need to add the extension.

All Changes by Component

Version 3.2.0 of the Reference Distribution contains updated versions of the components listed below. The Refer-
ence Distribution bundles these component together using Docker to create a complete OpenLMIS instance. Each
component has its own own public GitHub repository (source code) and DockerHub repository (release image). The
Reference Distribution and components are versioned independently; for details see Versioning and Releasing.

Auth Service 3.1.0

Improvements which are backwards-compatible:

• OLMIS-1498: The service will now fetch list of available services from consul, and update OAuth2 resources
dynamically when a new service is registered or de-registered. Those tokens are no longer hard-coded.

• OLMIS-2866: The service will no longer used self-contained user roles (USER, ADMIN), and depend solely
on referencedata’s roles for user management.

• OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

Source: Auth CHANGELOG

CCE Service 1.0.0-beta

This component is a beta of new Cold Chain Equipment functionality to support Vaccines in medical supply chains.
This API service component has an accompanying beta CCE UI component.

CCE 1.0.0-beta includes many new features:

• Create and update a cold chain equipment catalog
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• Add equipment inventory to facilities

• Update the functional status of equipment inventory

For details, see the functional documentation: Cold Chain Equipment Management

Warning: This is a beta component, and is not yet intended for production use. APIs and functionality are still subject
to change until the official release.

Fulfillment Service 6.0.0

Contract breaking changes:

• OLMIS-2898: Changed POD receivedDate from ZonedDateTime to LocalDate.

New functionality added in a backwards-compatible manner:

• OLMIS-2724: Added an endpoint for retrieving all the available, distinct requesting facilities.

Bug fixes and improvements (backwards-compatible):

• OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

• OLMIS-3059: The search orders endpoint now sorts the orders by created date property (most recent first).

Source: Fulfillment CHANGELOG

nginx v4

Improves stability and reliability of the application when individual services stop and start in their lifecycle. Also
performance is improved by reducing latency under load between nginx and Services through configuration tuning.

• OLMIS-2840: Allow services to stop and start without crashing consul-template.

• OLMIS-2957: Reduce nginx latency.

Notification Service 3.1.0

Bug fixes, security and performance improvements (backwards-compatible):

• OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

Source: Notification CHANGELOG

Postgres 9.6-postgis

The postgres image in OpenLMIS 3.2.0 has changed slightly to include the uuid-ossp extension, in order to randomly
generate UUIDs in SQL (this new requirement was introduced in OLMIS-2681). Because the change is minor and
does not change the version of Postgres, we have released an updated image with the same version number (9.6-
postgis). When using the 3.2.0 release, as long as you use docker-compose pull, it will pull the correct version
of the postgres image.
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Reference Data Service 8.0.0

Breaking changes:

• OLMIS-2709: Facility search now returns smaller objects.

• OLMIS-2698: Geographic Zone search endpoint now is paginated and accepts POST requests, also has new
parameters: name and code.

New functionality added in a backwards-compatible manner:

• OLMIS-2609: Created rights to manage CCE and assigned to system administrator.

• OLMIS-2610: Added CCE Inventory View/Edit rights, added demo data for those rights.

• OLMIS-2696: Added search requisition groups endpoint.

• OLMIS-2780: Added endpoint for getting all facilities with minimal representation.

• Introduced JaVers to all domain entities. Also each domain entity has endpoint to get the audit information.

• OLMIS-3023: Added enableDatePhysicalStockCountCompleted field to program settings.

• OLMIS-2619: Added CCE Manager role and assigned CCE Manager and Inventory Manager roles to new user
ccemanager.

• OLMIS-2811: Added API endpoint for user’s permission strings.

• OLMIS-2885: Added ETag support for programs and facilities endpoints.

Bug fixes, security and performance improvements, also backwards-compatible:

• OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

• OLMIS-2534: Fixed potential huge performance issue.

• OLMIS-2716: Set productCode field in Orderable as unique.

Source: ReferenceData CHANGELOG

Reference UI 5.0.3

The Reference UI bundles the following UI components together using Docker images specified in its compose file.

auth-ui 5.0.3

New functionality added in backwards-compatiable manner:

• OLMIS-3085: Added standard login and logout events.

Bug fixes and security updates:

• OLMIS-3124: Removed openlmis-download directive and moved it to openlmis-ui-components

• MW-348: Added loading modal while logging in.

• OLMIS-2871: Made the component use an Authorization header instead of an access_token request parameter
when calls to the backend are made.

• OLMIS-2867: Added message when user tries to log in while offline.

See openlmis-auth-ui CHANGELOG
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cce-ui 1.0.0-beta

Beta release of CCE UI. See CCE service component below for more info.

fulfillment-ui 5.0.3

Bug fixes:

• OLMIS-2837: Fixed filtering on the manage POD page.

• OLMIS-2724: Fixed broken requesting facility filter select on Order View.

See openlmis-fulfillment-ui CHANGELOG

referencedata-ui 5.2.1

Improvements:

• OLMIS-2780: User form now uses minimal facilities endpoint.

New functionality added in a backwards-compatible manner:

• OLMIS-3085: Made minimal facility list download and cache when user logs in.

• OLMIS-2696: Added requisition group administration screen.

• OLMIS-2698: Added geographic zone administration screens.

• OLMIS-2853: Added view Supply Lines screen.

• OLMIS-2600: Added view Program Settings screen.

Bug fixes

• OLMIS-2905: User with only POD_MANAGE or ORDERS_MANAGE can now access ‘View Orders’ page.

• OLMIS-2714: Fixed loading modal closing too soon after saving user.

See openlmis-referencedata-ui CHANGELOG

report-ui 5.0.3

Big fixes:

• OLMIS-2911: Added http method and body to jasper template paramter

See openlmis-report-ui CHANGELOG

requisition-ui 5.1.1

• OLMIS-2797: Updated product-grid error messages to use openlmis-invalid.

New functionality that are not backwards-compatible:

• OLMIS-2833: Add date field to Requisition form
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Date physical stock count completed is required for submit and authorize requisition. - OLMIS-3025: Introduced
frontend batch-approval functionality. - OLMIS-3023: Added configurable physical stock date field to program set-
tings. - OLMIS-2694: Change Requisition adjustment reasons to come from Requisition object. OpenLMIS Stock
Management UI is now connected to Requisition UI.

Improvements:

• OLMIS-2969: Requisitions show saving indicator only when requisition is editable.

Bug fixes:

• OLMIS-2800: Skip column will not be shown in submitted status when user has no authorize right.

• OLMIS-2801: Disabled the ‘Add Product’ button in the non-full supply screen for users without rights to edit
the requisition. Right checks for create/initialize permissions were also fixed.

• OLMIS-2906: “Outdated offline form” error is not appearing in a product grid when requisition is up to date.

• OLMIS-3017: Fixed problem with outdated status messages after Authorize action.

See openlmis-requisition-ui CHANGELOG

stockmanagement-ui 1.0.0

First release of Stock Management UI. See Stock Management service component below for more info.

ui-components 5.1.1

New functionality added in a backwards-compatible manner:

• OLMIS-2978: Made sticky table element animation more performant.

• OLMIS-2573: Re-worked table form error messages to not have multiple focusable elements.

• OLMIS-1693: Added openlmis-invalid and error message documentation.

• OLMIS-249: Datepicker element now allows translating day and month names.

• OLMIS-2817: Added new file input directive.

• OLMIS-3001: Added external url run block, that allows opening external urls.

Bug fixes:

• OLMIS-3088: Re-implemented tab error icon.

• OLMIS-3036: Cleaned up and formalized input-group error message implementation.

• OLMIS-3042: Updated openlmis-invalid and openlmis-popover element compilation to fix popovers from in-
stantly closing.

• OLMIS-2806: Fixed stock adjustment reasons display order not being respected in the UI.

See openlmis-ui-components CHANGELOG

ui-layout:5.0.2

New features:

• OLMIS-2543: Added interceptor for displaying server errors

See openlmis-ui-layout CHANGELOG

28 Chapter 1. Contents:

https://openlmis.atlassian.net/browse/OLMIS-3025
https://openlmis.atlassian.net/browse/OLMIS-3023
https://openlmis.atlassian.net/browse/OLMIS-2694
https://openlmis.atlassian.net/browse/OLMIS-2969
https://openlmis.atlassian.net/browse/OLMIS-2800
https://openlmis.atlassian.net/browse/OLMIS-2801
https://openlmis.atlassian.net/browse/OLMIS-2906
https://openlmis.atlassian.net/browse/OLMIS-3017
https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md
https://github.com/OpenLMIS/openlmis-stockmanagement-ui
https://openlmis.atlassian.net/browse/OLMIS-2978
https://openlmis.atlassian.net/browse/OLMIS-2573
https://openlmis.atlassian.net/browse/OLMIS-1693
https://openlmis.atlassian.net/browse/OLMIS-249
https://openlmis.atlassian.net/browse/OLMIS-2817
https://openlmis.atlassian.net/browse/OLMIS-3001
https://openlmis.atlassian.net/browse/OLMIS-3088
https://openlmis.atlassian.net/browse/OLMIS-3036
https://openlmis.atlassian.net/browse/OLMIS-3042
https://openlmis.atlassian.net/browse/OLMIS-2806
https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md
https://openlmis.atlassian.net/browse/OLMIS-2543
https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md


OpenLMIS Documentation, Release 3.0

Dev UI

The Dev UI developer tooling has advanced to v5.

Report Service 1.0.0

This new service is intended to provide reporting functionality for other components to use. It is a 1.0.0 release which
is stable for production use, and it powers one built-in report (the Facility Assignment Configuration Errors report).

Warning: Developers should take note that its design will be changing with future releases. Developers and imple-
menters are discouraged from using this 1.0.0 version to build additional reports.

Current report functionality:

• OLMIS-2760: Facility Assignment Configuration Errors

Additional built-in reports in OpenLMIS 3.2.0 are still powered by their own services. In future releases, they may be
migrated to a new version of this centralized report service.

Requisition Service 5.0.0

Contract breaking changes:

• OLMIS-2612: Configuration settings endpoints (/api/settings) are no longer available. Use environment vari-
ables to configure the application.

• MW-365: Requisition search endpoints: requisitionsForApproval and requisitionsForConvert will now return
smaller basic dtos.

• OLMIS-2833 and OLMIS-3023: Added date physical stock count completed to Requisition; and feature can be
turned on and off in Program Settings

• OLMIS-2671: Stock Management service is now required by Requisition

• OLMIS-2694: Changed Requisition adjustment reasons to come from Stock Service

• OLMIS-2898: Requisition search endpoint takes from/to parameters as dates without time part.

• OLMIS-2830: As of this version, Requisition now uses Stock Management as the source for adjust-
ment reasons, moreover it stores snapshots of these available reasons during initiation. Important: in
order to migrate from older versions, running this migration is required: https://github.com/OpenLMIS/
openlmis-adjustment-reason-migration

New functionality added in a backwards-compatible manner:

• OLMIS-2709: Changed ReferenceData facility service search endpoint to use smaller dto.

• The /requisitions/requisitionsForConvert endpoint accepts several sortBy parameters. Data returned by the end-
point will be sorted by those parameters in order of occurrence. By defaults data will be sorted by emergency
flag and program name.

• OLMIS-2928: Introduced new batch endpoints, that allow retrieval and approval of several requisitions at once.
This also refactored the error handling.

Bug fixes added in a backwards-compatible manner:

• OLMIS-2788: Fixed print requisition.

• OLMIS-2747: Fixed bug preventing user from being able to re-initiate a requisition after being removed, when
there’s already a requisition for next period.
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• OLMIS-2871: The service now uses an Authorization header instead of an access_token request parameter
when communicating with other services.

• OLMIS-2534: Fixed potential huge performance issue. The javers log initializer will not retrieve all domain
objects at once if a repository implemenets PagingAndSortingRepository

• OLMIS-3008: Add correct error message when trying to convert requisition to an order with approved quantity
disabled in the the requisition template.

• OLMIS-2908: Added a unique partial index on requisitions, which prevents creation of requisitions which have
the same facility, program and processing period while being a non-emergency requsition. This is now enforced
by the database, not only the application logic.

• OLMIS-3019: Removed clearance of beginning balance and price per pack fields from skipped line items while
authorizing.

• OLMIS-2911: Added HTTP method parameter to jasper template parameter object.

• OLMIS-2681: Added profiling to requisition search endpoint, also it is using db pagination now.

Source: Requisition CHANGELOG

Stock Management 1.0.0

This is the first official release of the new Stock Management service. Its beta version was previously released in
Reference Distribution 3.1.0. Since then, the major improvements are:

• OLMIS-2710: Configure VVM use per product

• OLMIS-2654 and OLMIS-2663: Record VVM status with physical stock count and adjustments

• OLMIS-2711: Change Physical Inventory to include reasons for discrepancy

• OLMIS-2834: Requisition form info gets pushed into Stock cards (see more in Requisition component)

• plus lots of technical work including Flyway migrations, RAML, tests, validations, translations, documentation,
and demo data.

Watch a video demo of the Stock Management functionality: https://www.youtube.com/watch?v=QMcXX3tUTHE
(English) or https://www.youtube.com/watch?v=G8BK0izxbnQ (French)

Now that this is an official release, the Stock service is considered stable for production use. Future changes to
functionality or APIs will be tracked and documented.

For a list of all commits since 1.0.0-beta, see GitHub commits

Components with No Changes

Other tooling components have not changed, including: the logging service and a library for shared Java code called
service-util.

Contributions

Many organizations and individuals around the world have contributed to OpenLMIS version 3 by serving on com-
mittees, bringing the community together, and of course writing code and documentation. Below is a list of those who
contributed code or documentation into the GitHub repos. If anyone who contributed in GitHub is missing, please
contact the Community Manager.

Team Parrot: Paweł Gesek, Paweł Albecki, Nikodem Graczewski, Mateusz Kwiatkowski, Joanna Bebak, Paweł
Nawrocki
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Team ILL: Chongsun Ahn, Brandon Bowersox-Johnson, Sam Im, Mary Jo Kochendorfer, Ben Leibert, Nick Reid,
Josh Zamor

A special thanks to the implementers working in Malawi who contributed features and improvements: Sebastian
Brudzinski, Weronika Ciecierska, Łukasz Lewczynski, Klaudia Pałkowska, Ben Leibert, Christine Lenihan.

Since version 3.1.2, we have received 40 pull requests from outside implementers and contributors.

Special thanks to community members: Kaleb Brownlow, Lindabeth Doby, Tenly Snow, Jake Watson, Ashraf Islam,
Parambir Gill, and all who attended the Product Committee, Technical Committee and Governance Committee meet-
ings, and the many funders, supporters, implementors, partners, and those working around the world to make medical
supply chains work for all people.

Further Resources

View all JIRA Tickets in 3.2.0.

Learn more about the OpenLMIS Community and how to get involved!

For older Release Notes before 3.2.0, see Releases in the OpenLMIS wiki.

For more about OpenLMIS releasing and versioning, see Versioning and Releasing.

1.2 Architecture

As of OpenLMIS v3, the architecture has transitioned to (micro) services fulfilling RESTful (HTTP) API requests
from a modularized Reference UI. Extension mechanisms in addition to microservices and UI modules further allow
for components of the architecture to be customized without the need for the community to fork the code base:

• UI modules give flexibility in creating new user experiences or changing existing ones

• Extension Points & Modules - allows Service functionality to be modified

• Extra Data - allows for extensions to store data with existing components

Combined these components allow the OpenLMIS community to customize and contribute to a shared LMIS.

1.2.1 New Service Guidelines

OpenLMIS’ Service architecture is centered around the concept of Bounded Contexts. In this pattern we identify
Service’s by grouping similar things (noun) into a Service, and define a clear boundary between that Service and
others. Where to draw this line, and decide when to create a new Service or when to contribute to/extend an existing
Service can sometimes be difficult to judge.

A quick set of guidelines for a OpenLMIS Service:

• A Service owns its data. For example the Requisition Service owns all the data that pertains to a Requisition
and moving it through the workflow. It depends on information to help it along: facilities, programs, user’s, etc.
While these things are needed for a Requisition, they aren’t inherently a Requisition’s things. The Requisition
service owns Requisition things: Requisitions and their Line Items, Requisition Templates, etc. It coordinates
with other OpenLMIS Service’s to obtain references of those other things it needs, that it doesn’t own.

• A Service owns transactions. Operations on a Service’s things almost always occur within a transaction. We
read the state of a Requisition or write new state about that Requisition. Other Service’s may become involved,
however the transaction as it appears to the User is owned by the original Service.
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• Service’s backing data stores (usually relational databases) do not know about one-another. Only Service’s know
about other Services. Because of this it’s the responsibility of the Services for maintaining referential integrity,
as Foreign Key’s can’t cross Services’s databases.

When considering creating a new Service, consider if that Service really owns its own things, and should be imple-
mented as an OpenLMIS Service, or if instead the functionality needed is a re-use of existing things in a new way, in
which case a contribution/extension should be made to an existing OpenLMIS Service. OpenLMIS does not follow
Serverless architecture at this time.

1.2.2 Docker

Docker Engine and Docker Compose is utilized throughout the tech stack to provide consistent builds, quicken en-
vironment setup and ensure that there are clean boundaries between components. Each deployable component is
versioned and published as a Docker Image to the public Docker Hub. From this repository of ready-to-run images on
Docker Hub anyone may pull the image down to run the component.

Development environments are typically started by running a single Service or UI module’s development docker com-
pose. Using docker compose allows the component’s author to specify the tooling and test runtime (e.g. PostgreSQL)
that’s needed to compile, test and build and package the production docker image that all implementation’s are intended
to use.

After a production docker image is produced, docker compose is used once again in the Reference Distribution to
combine the desired deployment images with the needed configuration to produce an OpenLMIS deployment.

1.3 Components

OpenLMIS v3 uses a micro-services Architecture with different services each providing different APIs.

Each component below has its own Git repository, API docs and ERD. Many services below also have a corresponding
UI component (e.g. Auth UI, Requisition UI). The Reference UI builds all of these UI components together into one
web application.

1.3.1 Logging into the Live Documentation

The live documentation links below connect directly to our API Console docs on our CI server. To use the API you’ll
first need to get an access token from the Auth service, and then you’ll need to give that token when using one of the
RESTful operations.

Obtaining an access token:

1. Go to the Auth service’s POST /api/oauth/token

2. Click Try it in the top right of the tab

3. In the Authentication section, enter username user-client and password changeme

4. In the Query Parameters section, enter username administrator and password password

5. Click Authorize under password

6. Enter the username administrator and password password

7. Click Post

8. In the Response box, copy the UUID. e.g. "access_token":
"a93bcab7-aaf5-43fe-9301-76c526698898" copy a93bcab7-aaf5-43fe-9301-76c526698898
to use later
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9. Paste the UUID you just copied into any endpoint’s access_token field or into Authorization
with Bearer e.g. "access_token": "a93bcab7-aaf5-43fe-9301-76c526698898" ->
Authorization: Bearer a93bcab7-aaf5-43fe-9301-76c526698898

1.3.2 Auth Service

Auth Service provides RESTful API endpoints for Authentication and Authorization. It holds user security credentials,
handles password resets, and also manages API keys. It uses OAuth2. The Auth Service works with the Reference
Data service to handle role-based access controls. (See the Auth Service README for details.)

• Auth Service GitHub repo

• Auth Service README

• Auth Service Design

• Auth Service ERD

• Static Documentation for Auth API

1.3.3 Fulfillment Service

Fulfillment Service provides RESTful API endpoints for orders, shipments, and proofs of delivery. It supports fulfill-
ment within OpenLMIS as well as external fulfillment using external ERP warehouse systems.

• Fulfillment Service GitHub repo

• Fulfillment Service README

• Fulfillment ERD

• Static Documentation for Fulfillment API

1.3.4 CCE Service

The Cold Chain Equipment (CCE) Service provides RESTful API endpoints for managing a CCE catalog, inventory
(tracking equipment at locations) and functional status. The catalog can use the WHO PQS.

• CCE Service GitHub repo

• CCE Service README

• CCE ERD

• Static Documentation for CCE API

1.3.5 Notification Service

The Notification Service provides RESTful API endpoints that allow other OpenLMIS services to send email notifi-
cations to users. The Notification Service does not provide a web UI.

• Notification Service GitHub repo

• Notification Service README

• Static Documentation for Notification API
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1.3.6 Reference Data Service

The Reference Data Service provides RESTful API endpoints that provide master lists of reference data including
users, facilities, programs, products, schedules, and more. Most other OpenLMIS services depend on Reference Data
Service. Many of these master lists can be loaded into OpenLMIS in bulk using the Reference Data Seed Tool or can
be added and edited individually using the Reference Data Service APIs.

• Reference Data Service GitHub repo

• Reference Data Service README

• Reference Data ERD

• Static Documentation for Reference Data API

1.3.7 Reference UI

The OpenLMIS Reference UI is a single page application that is compiled from multiple UI repositories. The Refer-
ence UI is similar to the OpenLMIS-Ref-Distro, in that it’s an example deployment for implementers to use.

Learn about the Reference UI:

• OpenLMIS UI Overview describes the UI architecture and tooling

• UI Styleguide shows examples and best practices for many re-usable components

• Dev UI documents the build process and commands used by all UI components

Coding and Customizing the UI:

• UI Extension Guide

• UI Conventions

• Javascript Documentation

UI Repositories:

• Reference UI puts all the UI repositories into one single page application (Reference UI GitHub repo)

• Dev UI provides the build tools and commands. All other UI repositories use these build tools by including Dev
UI as a base image in docker-compose. (Dev UI GitHub repo)

• UI Components is where OpenLMIS reusable components are defined along with base CSS styles (UI Compo-
nents GitHub repo)

• Auth UI connects the OpenLMIS UI to the OpenLMIS Auth Service and handles all authentication details so
other UI repositories don’t have to (Auth UI GitHub repo)

• UI Layout defines UI layouts and page architecture used in the OpenLMIS UI (UI Layout GitHub repo)

• Reference Data UI adds administration screens for objects defined in the OpenLMIS Reference Data Service
(Reference Data UI GitHub repo)

• Stock Management UI adds screens to interact with the OpenLMIS Stock Management Service (Stock Manage-
ment UI GitHub repo)

• Fulfillment UI adds screens to connect to the OpenLMIS Fulfillment Service (Fulfillment UI GitHub repo)

• CCE UI adds screens for the OpenLMIS CCE Service. (CCE UI GitHub repo)

• Requisition UI adds screens to support the OpenLMIS Requisition Service (Requisition UI GitHub repo)

• Report UI adds screens to interact with OpenLMIS Report Service (Report UI GitHub repo)
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1.3.8 Report Service

The Report Service provides RESTful API endpoints for generating printed / banded reports. It owns report storage,
generation (including in PDF format), and seeding rights that users may be given.

• Report Service GitHub repo

• Report Service README

• Report ERD

• Static Documentation for Report API

1.3.9 Requisition Service

The Requisition Service provides RESTful API endpoints for a robust requisition workflow used in pull-based supply
chains for requesting more stock on a schedule through an administrative hierarchy. Requisitions are initiated, filled
out, submitted, and approved based on configuration. Requisition Templates control what information is collected on
the Requisition form for different programs and facilities.

• Requisition Service GitHub repo

• Requisition Service README

• Requisition ERD

• Static Documentation for Requisition API

1.3.10 Stock Management Service

The Stock Management Service provides RESTful API endpoints for creating electronic stock cards and recording
stock transactions over time.

• Stock Management Service GitHub repo

• Stock Management Service README

• Stock Management ERD

• Static Documentation for Stock Management API

1.4 Contributing

OpenLMIS is an open source community which appreciates the work of its contributors. Through contribution we’re
able to build a knowledgable community and make a wider impact than we would apart.

Contributing takes work so these guides aim to make that work clear and manageable:

1.4.1 Contributing to OpenLMIS

By contributing to OpenLMIS, you can help bring life-saving medicines to low- and middle-income countries. The
OpenLMIS community welcomes open source contributions. Before you get started, take a moment to review this
Contribution Guide, get to know the community and join in on the developer forum.

The sections below describe all kinds of contributions, from bug reports to contributing code and translations.
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Reporting Bugs

The OpenLMIS community uses JIRA for tracking bugs. All bugs must be submitted to the OLMIS project to be
reviewed or worked on. This system helps track current and historical bugs, what work has been done, and so on.
Reporting a bug with this tool is the best way to get the bug fixed quickly and correctly.

Before you report a bug

• Search to see if the same bug or a similar one has already been reported. If one already exists, it saves you time
in reporting it again and the community from investigating it twice. You can add comments or explain what you
are experiencing or advocate for making this bug a high priority to fix quickly.

• If the bug exists but has been closed, check to see which version of OpenLMIS it was fixed on (the Fix Version
in JIRA) and which version you are using. If it is fixed in a newer version, you may want to upgrade. If you
cannot upgrade, you may need to ask on the technical forums.

• If the bug does not appear to be fixed, you can add a comment to ask to re-open the bug report or file a new one.

Reporting a new bug

Fixing bugs is a time-intensive process. To speed things along and assist in fixing the bug, it greatly helps to send in a
complete and detailed bug report. These steps can help that along:

1. First, make sure you search for the bug in the current OpenLMIS backlog! It takes a lot of work to report and
investigate bug reports, so please do this first (as described in the section Before You Report a Bug above).

2. Create a bug in the OpenLMIS Jira Project. Include the following information in the ticket:

(a) Type: Select “bug”

(b) Status: Leave as “ROADMAP”. The OpenLMIS team will update the status to “TO DO” once the ticket
is ready for work and reproduced.

(c) Description: Write a clear and concise explanation of what you entered and what you saw, as well as
what you thought you should see from OpenLMIS. Include the detailed steps, such as the Steps in the
example below, that someone unfamiliar with the bug can use to recreate it. Make sure this bug occurs
more than once, perhaps on a different personal computer or web browsers. Indicate the web browser (e.g.
Firefox), version (e.g. v48), OpenLMIS version, as well as any custom modifications made. Include any
time sensitivities or information of impact to support the team in prioritizing the bug.

(d) Priority: Indicate the priority level based on the guidence below in the Prioritizing Bugs section. The
priority may be updated later by the Product Manager upon grooming and scheduling for work.

(e) Affects Version/s: Indicate what version of the reference distribution the bug was found in.

(f) Component: If you know which service is impacted by the bug, please include. If not, leave it blank.

(g) Attachments: Attach any relevant screen shots, videos or documents that will help the team understand and
reproduce the bug.

3. If applicable, include any error message text, a screenshot, stack trace, or logging output in the Description or
Attachments.

4. If possible and relevant, a sample or view of the database - though don’t post sensitive information in public.

Once the bug is submitted, the OpenLMIS team will review the bugs prior to the next sprint cycle. Bugs will be
prioritized and scheduled for work based on priority, resources, and implementation needs. Follow the ticket in Jira
for updates on status and completion. Each release includes a list of bugs fixed.
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Prioritizing Bugs

Each bug submission should include an initial prioritization form the reporter. Please follow the guidelines below for
the initial prioritization.

• Blocker: Cannot execute function (cannot click button, button does not exist, cannot complete action when
button is clicked). Cannot complete expected action (does not match expected results for the test case). No error
message when there is an error. OpenLMIS will not release with this bug.

• Critical: Error message is unactionable by the user, and user cannot complete next action (500 server error
message). Search results provided do not match expected results based on data. Poor UI performance or acces-
sibility (user cannot tab to column or use keyboard to complete action). OpenLMIS should not release with this
bug.

• Major: Performance related (slow response time). Major asthetic issue (See UI Styleguide for reference).
Incorrect filtering, but doesn’t block users from completing tasks and executing functionality. Wrong user error
message (user does not know how to proceed based on the error message provided).

• Minor: Aesthetics (spacing is wrong, alignment is wrong, see UI Styleguide). Message key is wrong. Console
errors. Service giving the wrong error between services.

• Trivial: Anything else.

When the bug is groomed and scheduled for work, the Product Manager will set the final priority level. See Backlog
Grooming for details on the scheduling of work.

Example Bug Report

Requisition is not being saved
OpenLMIS v3.0, Postgres 9.4, Firefox v48, Windows 10

When attempting to save my in-progress Requisition for the Essential Medicines
→˓program for the reporting period of Jan 2017,
I get an error at the bottom of the screen that says "Whoops something went wrong".

Steps:

1. log in

2. go to Requistions->Create/Authorize

3. Select My Facility (Facility F3020A - Steinbach Hospital)

4. Select Essential Medicines Program

5. Select Regular type

6. Click Create for the Jan 2017 period

7. Fill in some basic requested items, or not, it makes no difference in the error

8. Click the Save button in the bottom of the screen

9. See the error in red at the bottom. The error message is "Whoops something went
→˓wrong".

I expected this to save my Requisition, regardless of completion, so that I may
→˓resume it later. (continues on next page)
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(continued from previous page)

Please see attached screenshots and database snapshot.

Contributing Code

The OpenLMIS community welcomes code contributions and we encourage you to implement a new feature. Review
the following process and guidelines for contributing new features or modification to existing functionality.

Coordinating with the Global Community

In reviewing your proposed contribution, the community promotes features that meet the broad needs of many coun-
tries for inclusion in the global codebase. We want to ensure that changes to the shared, global code will not negatively
impact existing users and existing implementations. We encourage country-specific customizations to be built using
the extension mechanism. Extensions can be shared as open source projects so that other countries might adopt them.

To that end, when considering coding a new feature or modification, please follow these steps to coordinate with the
global community:

1. Create an OpenLMIS Jira ticket and include information for the following fields:

(a) Type: Select “New Feature”

(b) Status: Leave as “ROADMAP”

(c) Summary: One line description of the feature

(d) Component/s: If you know which service is impacted by the new feature, please include. If not, leave it
blank.

(e) Description: Include the user story and detailed description of the feature. Highlight the end user value.
Include user steps and edge cases if applicable. Attach screen shots or diagrams if useful.

(f) Affects Version: Leave it blank.

2. Send an email to the product committee listserv (instructions) with the link to the Jira ticket and any additional
information or context about the request. Please review the Global vs. Project-Specific Features wiki for details
on how to evaluate if a feature is globally applicable or specific to an implementation. Please clearly indicate
any time sensitivities so the product committee is aware and can be responsive.

3. The Product Committee will review the feature request at the next Product Committee meeting and provide
feed back or request further clarification. Once the feature request is understood, the Product Committee will
evaluate the request.

4. If the request is deemed globally applicable and acceptable for the global codebase, the Product Committee will
provide any additional guidence or direction needed in preparation for the Technical Committee review.

5. Once approved by the product committee, we request the implementer to contact the developer forum or contact
the Technical Committee to provide a proposed technical design to implement the approved feature. They can
help share relevant resources or create any needed extension points (further details below).

Extensibility and Customization

A prime focus of version 3 is enabling extensions and customizations to happen without forking the codebase.

There are multiple ways OpenLMIS can be extended, and lots of documentation and starter code is available:
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• The Reference UI supports extension by adding CSS, overriding HTML layouts, adding new screens, or replac-
ing existing screens in the UI application. See the UI Extension Guide.

• The Reference Distribution is a collection of collaborative Services, Services may be added in or swapped out
to create custom distributions.

• The Services can be extended using extension points in the Java code. The core team is eager to add more
extension points as they are requested by implementors. For documentation about this extension mechanism, see
these 3 READMEs: openlmis-example-extensions README, openlmis-example-extension module README,
and openlmis-example service README.

• Extra Data allows for clients to add additional data to RESTful resources so that the internal storage mechanism
inside a Service doesn’t need to be changed.

• Some features may require both API and UI extensions/customizations. The Technical Committee worked on
a Requisition Splitting Extension Scenario that illustrates how multiple extension techniques can be used in
parallel.

To learn more about the OpenLMIS extension architecture and use cases, see: https://openlmis.atlassian.net/wiki/x/
IYAKAw.

Extension Points

To avoid forking the codebase, the OpenLMIS community is committed to providing extension points to enable any-
one to customize and extend OpenLMIS. This allows different implementations to share a common global codebase,
contribute bug fixes and improvements, and stay up-to-date with each new version as it becomes available.

Extension points are simply hooks in the code that enable some implementations to extend the system with different
behavior while maintaining compatibility for others. The Dev Forum or Technical Committee group can help advise
how best to do this. They can also serve as a forum to request an extension point.

Developing A New Service

OpenLMIS 3 uses a microservice architecture, so more significant enhancements to the system may be achieved by
creating an additional service and adding it in to your OpenLMIS instance. See the Template Service for an example
to get started.

What’s not accepted

• Code that breaks the build or disables / removes needed tests to pass

• Code that doesn’t pass our Quality Gate - see the Style Guide and Sonar.

• Code that belongs in an Extension or a New Service

• Code that might break existing implementations - the software can evolve and change, but the community needs
to know about it first!

Git, Branching & Pull Requests

The OpenLMIS community employs several code-management techniques to help develop the software, enable con-
tributions, discuss & review and pull the community together. The first is that OpenLMIS code is managed using
Git and is always publicly hosted on GitHub. We encourage everyone working on the codebase to take advantage of
GitHub’s fork and pull-request model to track what’s going on.
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For more about version numbers and releasing, see versioningReleasing.md.

The general flow:

1. Communicate using JIRA, the wiki, or the developer forum!

2. Fork the relevant OpenLMIS project on GitHub

3. Branch from the master branch to do your work

4. Commit early and often to your branch

5. Re-base your branch often from OpenLMIS master branch - keep up to date!

6. Issue a Pull Request back to the master branch - explain what you did and keep it brief to speed review!
Mention the JIRA ticket number (e.g., “OLIMS-34”) in the commit and pull request messages to activate the
JIRA/GitHub integration.

While developing your code, be sure you follow the Style Guide and keep your contribution specific to doing one
thing.

Automated Testing

OpenLMIS 3 includes new patterns and tools for automated test coverage at all levels. Unit tests continue to be the
foundation of our automated testing strategy, as they were in previous versions of OpenLMIS. Version 3 introduces
a new focus on integration tests, component tests, and contract tests (using Cucumber). Test coverage for unit and
integration tests is being tracked automatically using Sonar. Check the status of test coverage at: http://sonar.openlmis.
org/. New code is expected to have test coverage at least as good as the existing code it is touching.

Continuous Integration, Continuous Deployment (CI/CD) and Demo Systems

Continuous Integration and Deployment are heavily used in OpenLMIS. Jenkins is used to automate builds and deploy-
ments trigged by code commits. The CI/CD process includes running automated tests, generating ERDs, publishing
to Docker Hub, deploying to Test and UAT servers, and more. Furthermore, documentation of these build pipelines
allows any OpenLMIS implementation to clone this configuration and employ CI/CD best practices for their own
extensions or implementations of OpenLMIS.

See the status of all builds online: http://build.openlmis.org/

Learn more about OpenLMIS CI/CD on the wiki: CI/CD Documentation

Language Translations & Localized Implementations

OpenLMIS 3 has translation keys and strings built into each component, including the API services and UI compo-
nents. The community is encouraging the contribution of translations using Transifex, a tool to manage the translation
process. Because of the micro-service architecture, each component has its own translation file and its own Transifex
project.

See the OpenLMIS Transifex projects and the Translations wiki to get started.

Licensing

OpenLMIS code is licensed under an open source license to enable everyone contributing to the codebase and the
community to benefit collectively. As such all contributions have to be licensed using the OpenLMIS license to be
accepted; no exceptions. Licensing code appropriately is simple:
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Modifying existing code in a file

• Add your name or your organization’s name to the license header. e.g. if it reads copyright
VillageReach, update it to copyright VillageReach, <insert name here>

• Update the copyright year to a range. e.g. if it was 2016, update it to read 2016-2017

Adding new code in a new file

• Copy the license file header template, LICENSE-HEADER, to the top of the new file.

• Add the year and your name or your organization’s name to the license header. e.g. if it
reads Copyright © <INSERT YEAR AND COPYRIGHT HOLDER HERE>, update it to Copyright
© 2017 MyOrganization

For complete licensing details be sure to reference the LICENSE file that comes with this project.

Feature Roadmap

The Living Roadmap can be found here The backlog can be found here

Suggest a New Feature

The OpenLMIS community welcomes suggestions and requests for new features, functionality or improvements to
OpenLMIS. Please note that suggested new features may or may not be scheduled for work depending on re-
sourcing and value to the community. If this feature is needed for a specific implementation in a timely fashion
we suggest the team consider building the feature and contributing it back to core. See the section on Con-
tributing Code above for details. Follow the steps below so that the community can review, evaluate, and potentially
schedule the new feature for work:

1. Create an OpenLMIS Jira ticket and include information for the following fields:

(a) Type: Select “New Feature”

(b) Status: Leave as “ROADMAP”

(c) Summary: One line description of the feature

(d) Component/s: If you know which service is impacted by the new feature, please include. If not, leave it
blank.

(e) Description Include the user story and detailed description of the desired new feature, functionality or
improvement. Highlight the end user value. Include user steps and edge cases if applicable. Attach screen
shots or diagrams if useful in building a shared understanding of the suggested feature.

(f) Affects Version: Leave it blank.

2. Send an email to the product committee listserv (instructions) with the link to the Jira ticket and any additional in-
formation or context about the suggested feature and functionality. Please review the Global vs. Project-Specific
Features wiki for details on how to evaluate if a feature is globally applicable or specific to an implementation.
Please clearly indicate any time sensitivities so the product committee is aware and can be responsive.

3. The Product Committee will review the feature request at the next Product Committee meeting and provide
feed back or request further clarification. Once the feature request is understood, the Product Committee will
evaluate the request to determine the next steps.
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• The Product Committee will set the priority of the feature and keep the Jira ticket updated with information
on scheduling, questions, and if any additional information is needed.

4. Follow the ticket in Jira or attend Product Committee meetings to keep updated on the status of the suggested
new feature.

Contributing Documentation

Writing documentation is just as helpful as writing code. See Contribute Documentation.

References

• Developer Documentation (ReadTheDocs) - http://docs.openlmis.org/

• Developer Guide (in the wiki) - https://openlmis.atlassian.net/wiki/display/OP/Developer+Guide

• Architecture Overview (v3) - https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=51019809

• API Docs - http://docs.openlmis.org/en/latest/api

• Database ERD Diagrams - http://docs.openlmis.org/en/latest/erd/

• GitHub - https://github.com/OpenLMIS/

• JIRA Issue & Bug Tracking - https://openlmis.atlassian.net/projects/OLMIS/issues

• Wiki - https://openlmis.atlassian.net/wiki/display/OP

• Developer Forum - https://groups.google.com/forum/#!forum/openlmis-dev

• Release Process (using Semantic Versioning) - https://openlmis.atlassian.net/wiki/display/OP/Releases

• OpenLMIS Website - https://openlmis.org

1.4.2 Contribute documentation

This document briefly explains the process of collecting, building and contributing the documentation to OpenLMIS
v3.

Build process

The developer documentation for OpenLMISv3 is scattered across various repositories. Moreover, some of the artifacts
are dynamically generated, based on the current codebase. All that documentation is collected by a single script. In
order to collect a new document to be able to include it in the developer documentation, it must be placed in the
collect-docs.py script. The documentation is built daily and is triggered by a Jenkins job. It then gets published via
ReadTheDocs at http://docs.openlmis.org. The static documentation files and the build configuration is kept on the
openlmis-ref-distro repository, in the docs directory. It is also possible to rebuild and upload the documentation to
Read the Docs manually, by running the OpenLMIS-documentation Jenkins job.

Contributing

Depending on the part of the documentation that you wish to contribute to, a specific document in one of the GitHub
repositories must be edited. The list below explains where the particular pieces of the documentation are fetched from,
in order to be able to locate and edit them.
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Developer docs - Services: The documentation for each service is taken from the README.md file located on that
repository.

Developer docs - Style guide: This is the code style guide, located in the openlmis-template-service in file STYLE-
GUIDE.md.

Developer docs - Testing guide: This is the document that outlines the strategy and rules for test development. It is
located in the openlmis-template-service in TESTING.md file.

Developer docs - Error Handling: This document outlines how errors should be managed in Services and how they
should be reported through API responses.

ERD schema: The ERD schema for certain services is generated by Jenkins. The static file that links to the schema
is located together with the documentation and the schemas itself are built and kept on Jenkins as build artifacts. The
link always points to the ERD schema of the latest, successful build.

UI Styleguide: The configuration of the styleguide is located on the openlmis-requisition-refUI. The actual Styleguide
is generated by the Jenkins job and uploaded to the gh-pages branch on the same repository.

API documentation: This contains the link to the Swagger documentation for the API endpoints. It is built by the
Jenkins job and kept as a build artifact, based on the content of the RAML file. The link always points to the API
documentation of the latest successful build.

1.5 Conventions

1.5.1 The License Header

Each java or javascript file in the codebase should be annotated with the proper copyright header. This header should
be also applied to singnificant html files.

We use checkstyle to check for it being present in Java files. We also check for it during our Grunt build in javascript
files.

The current copyright header format can be found [here.] (https://raw.githubusercontent.com/OpenLMIS/openlmis-
ref-distro/master/LICENSE-HEADER)

Replace the year and holder with appropriate holder, for example:

Copyright © 2017 VillageReach

1.5.2 OpenLMIS Community Principles (2015)

The OpenLMIS community principles aims to help contributors to the project create quality contributions by illimu-
nating some of the intentions behind the OpenLMIS principles and influence better design and implementation of
OpenLMIS features.

This document is an outcome of the 2015 Community meeting and is copied (with minor modification) from its
original source.

Principles

Open Source

OpenLMIS is offered under an open source license, which means that everyone has the right to use
and modify the software without paying a license fee. Changes and additions are made available to the
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community under the terms of the license via our code contribution process.

OpenLMIS is built and licensed under an Open Source license. In addition to the project being Open Source,
OpenLMIS strives to always be available to develop on, build, deploy, use and generally contribute to using simi-
larly licensed technologies. In practice this means that strong preference is given to contributions and their dependant
technologies that are licensed similarly. Contributions should aspire to contribute:

• Code and other IP licensed in a compatible license as OpenLMIS. Strong preference is given to the OpenLMIS
license for simplicity.

• Dependencies on third-party libraries / tools should also be open source and freely distributable.

Appropriate

OpenLMIS is designed with a focus on users in low resource and capacity environments. Representatives
from these environments are welcomed and valued members of the community and their insights help
shape the software.

OpenLMIS is built and used by those in low-resource settings:

• Internet is often slow and intermittent. Features should be designed with these limitations in mind. For ex-
ample, most work-flows should be optimized for slow internet and even work-flows with periods of non-
connectivity.Administrative screens however can often take shortcuts and assume that their users will have better
internet connectivity.

• Processes not only vary and need to be configurable by program and implementation, they oftentimes areused
in parallel or supplement traditional paper processes. Data collection and forms should strive to be configurable
to match the official paper form and be able to restore it historically.

• Screens are often older and come with lower resolutions than the latest and greatest. 800x600 px screens are
not uncommon. Additionally, many work-flows that would be used by someone at the last mile will be used by
someone with a smaller tablet or even a phone.

• Scalability for OpenLMIS is the capability of use in large hospitals to community health workers nation wide.
The workflow from data collection, processing through to report delivery should be designed and implemented
for thousands of users with thousands of physical facilities.

• Security is important for OpenLMIS to be trusted to run nation-wide government supply chains to NGO initia-
tives.A role-based security system contains users to see and do only what is required for their role. Care should
be given in designing features and running implementations to keep OpenLMIS secure.

Configurable

OpenLMIS flexibly supports the varied needs of low-resource health supply chains. OpenLMIS strives
to be designed so that countries can configure and use the software with minimal training and technical
capacity.

Supply chains vary. Reporting requirements, process differences, language, and even the look and feel need to be
as configurable as is reasonable for OpenLMIS to continue to deliver on its mission. In order to accomplish this,
OpenLMIS contributions need to at a minimum continue to deliver:

• Language - Language tags allow messages/UI/email/API/etc to be translated into many different languages and
allows the user to switch the language displayed easily. OpenLMIS has standardized development in English
for consistency and supports translation projects as the opportunity arises.

• Dates - Date formatting also varies by locality. As such any date or time printed should allow for custom
formatting.
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• Programs allow for OpenLMIS to configure the vertical supply chains present in many low- and middle-
income countries independently. e.g. a Malaria program may collect different data by different people than
an HIV/AIDS program.

• Schedules allow for a Program to define regular or even planned irregularity for timing of program related
events.Monthly and quarterly are typical examples, however a schedule may have periods where a monthly
schedule may have to be extended to a couple months when seasonal monsoons slow transportation networks.

• Variable and often Program-segregated administrative hierarchies are needed to ensure programs can operate
independently and reflect the common situation of programs not sharing staff.

• A singular geographic hierarchy is currently in use. Unlike many features of OpenLMIS, this definition is not
segregated by Program and is meant to reflect that physical facilities often are part of one official geographic
hierarchy. In the future this may need to be Program-segregated. For now utilizing administrative hierarchies
can be used instead.

• Replenishment cycles also vary by Program in an implementation. The two standard processes, distribution
(push) and allocation (pull), are present and in use in OpenLMIS. These two different types of processes differ
by who starts them, their cycle, and also how re-supply calculations/projections are made.

Interoperable

OpenLMIS strives to be interoperable with other systems in a larger health information ecosystem.

Achieving interoperability requires a balance between allowing for flexibility and controlling for consis-
tency.OpenLMIS aims to achieve this by:

• designing for and implementing customizable data storage, processing and reporting that’s accessible through
published APIs & formats.

• encouraging expansion and customization through modularity.

• maintaining a consistent and robust data-model and reporting interfaces so that a field/column/report means the
same thing from implementation to implementation.

• maintaining a consistent look & feel so that using OpenLMIS anywhere always looks and behaves in a pre-
dictable manner.

Collaborative

OpenLMIS users benefit from the diversity of perspectives and resources that community members bring
to the table, which results in a more flexible and powerful system than what any one organization could
create. The community acknowledges that successful country implementation requires close collaboration
among partners and stakeholders to ensure success.

• documentation is needed to communicate how to use a contribution and the intention behind it. This can take
many different forms and it’s left to the contributor to determine and provide appropriate levels of documen-
tation. The community strongly discourages contributions that are light on documentation. It’s suggested that
documentation is prioritized for: published APIs, designs and code contracts. Additionally documenting the
why over the how is oftentimes more useful over a longer period of time.

• sharing code often comes with mis-matched expectations and undesired consequences, so it’s not unexpected
that development often occurs behind closed-doors until “it’s ready”. The OpenLMIS project however aims
to be open so all code that is part of the OpenLMIS project is found in the OpenLMIS organization. The
recommended approach to collaborating is documented.
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• sharing ideas, work items, roadmaps, feature requests, knowledge bases, etc. is vital to know where the project
is going and encourage participation. To that end OpenLMIS encourages all participants to utilize the public
forums, chat, project management, and wiki spaces to collaborate. An active list is found at docs.openlmis.org.

• automated testing ensures functionality from developer to developer and implementation to implementation is
behaving as expected over time. OpenLMIS doesn’t currently define code-coverage targets, however, the project
expects that appropriate test coverage is provided with every contribution and highly scrutinizes existing tests.
Since testing is so important, calling out the kinds of testing done and not done and why can greatly help the
review process for contributions.

Supportive

The community acts as stewards for the implementation, configuration, training on, operation, and sus-
tainment of OpenLMIS. The community strives to be knowledge experts on the problems that OpenLMIS
attempts to solve.

1.5.3 Service Conventions

OpenLMIS Service Style Guide

This is a WIP as a style guide for an Independent Service. Clones of this file should reference this definition.

Java

OpenLMIS has adopted the Google Java Styleguide. These checks are mostly encoded in Checkstyle and should be
enforced for all contributions.

Some additional guidance:

• Try to keep the number of packages to a minimum. An Independent Service’s Java code should generally all be
in one package under org.openlmis (e.g. org.openlmis.requisition).

• Sub-packages below that should generally follow layered-architecture conventions; most (if not all) classes
should fit in these four: domain, repository, service, web. To give specific guidance:

– Things that do not strictly deal with the domain should NOT go in the domain package.

– Serializers/Deserializers of domain classes should go under domain, since they have knowledge of do-
main object details.

– DTO classes, belonging to serialization/deserialization for endpoints, should go under web.

– Exception classes should go with the classes that throw the exception.

– We do not want separate sub-packages called exception, dto, serializer for these purposes.

• When wanting to convert a domain object to/from a DTO, define Exporter/Importer interfaces for the domain
object, and export/import methods in the domain that use the interface methods. Then create a DTO class that
implements the interface methods. (See Right and RightDto for details.)

– Additionally, when Exporter/Importer interfaces reference relationships to other domain objects, their Ex-
porter/Importer interfaces should also be used, not DTOs. (See example.)

• Even though the no-argument constructor is required by Hibernate for entity objects, do not use it for object
construction (you can set access modifier to private); use provided constructors or static factory methods. If
one does not exist, create one using common sense parameters.
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RESTful Interface Design & Documentation

Designing and documenting

Note: many of these guidelines come from Best Practices for Designing a Pragmatic RESTful API.

• Result filtering, sorting and searching should be done by query parameters. Details

• Return a resource representation after a create/update. Details

• Use camelCase (vs. snake_case) for names, since we are using Java and JSON. Details

• Don’t use response envelopes as default (if not using Spring Data REST). Details

• Use JSON encoded bodies for create/update. Details

• Use a clear and consistent error payload. Details

• Use the HTTP status codes effectively. Details

• Resource names should be pluralized and consistent. e.g. prefer requisitions, never requisition.

• Resource representations should use the following naming and patterns:

– Essential: representations which can be no shorter. Typically this is an id and a code. Useful most
commonly when the resource is a collection, e.g. /api/facilities.

– Normal: representations which typically are returned when asking about a specific resource. e.g. /api/
facilities/{id}. Normal representations define the normal transactional boundary of that resource,
and do not include representations of other resources.

– Optional: a representation that builds off of the resource’s essential representation, allowing for the client
to ask for additional fields to be returned by specifying a fields query parameter. The support for these
representations is completely, as the name implies, optional for a resource to provide. Details

– Expanded: a representation which is in part, not very RESTful. This representation allows for other,
related, resources to be included in the response by way of the expand query parameter. Support for
these representations is also optional, and in part somewhat discouraged. Details

• A PUT on a single resource (e.g. PUT /facilities/{id}) is not strictly an update; if the resource does not exist,
one should be created using the specified identity (assuming the identity is a valid UUID).

• Exceptions, being thrown in exceptional circumstances (according to Effective Java by Joshua Bloch), should
return 500-level HTTP codes from REST calls.

• Not all domain objects in the services need to be exposed as REST resources. Care should be taken to design
the endpoints in a way that makes sense for clients. Examples:

– RoleAssignments are managed under the users resource. Clients just care that users have roles; they
do not care about the mapping.

– RequisitionGroupProgramSchedules are managed under the requisitionGroups resource.
Clients just care that requisition groups have schedules (based on program).

• RESTful endpoints that simply wish to return a JSON value (boolean, number, string) should wrap that value in
a JSON object, with the value assigned to the property “result”. (e.g. { "result": true })

– Note: this is to ensure compliance with all JSON parsers, especially ones that adhere to RFC4627, which
do not consider JSON values to be valid JSON. See the discussion here.

• When giving names to resources in the APIs, if it is a UUID, its name should have a suffix of “Id” to show
that. (e.g. /api/users/{userId}/fulfillmentFacilities has query parameter rightId to get
by right UUID.)
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• If you are implementing HTTP caching for an API and the response is a DTO, make sure the DTO implements
equals() and hashCode() using all its exposed properties. This is because of potential confusion of a property
change without a change of ETag.

We use RAML (0.8) to document our RESTful APIs, which are then converted into HTML for static API documenta-
tion or Swagger UI for live documentation. Some guidelines for defining APIs in RAML:

• JSON schemas for the RAML should be defined in a separate JSON file, and placed in a schemas subfolder in
relation to the RAML file. These JSON schema files would then be referenced in the RAML file like this (using
role as an example):

- role: !include schemas/role.json

- roleArray: |
{

"type": "array",
"items": { "type": "object", "$ref": "schemas/role.json" }

}

– (Note: this practice has been established because RAML 0.8 cannot define an array of a JSON schema for
a request/response body (details). If the project moves to the RAML 1.0 spec and our RAML testing tool
adds support for RAML 1.0, this practice might be revised.)

Pagination

Many of the GET endpoints that return collections should be paginated at the API level. We use the following guide-
lines for RESTful JSON pagination:

• Pagination options are done by query paramaters. i.e. use /api/someResources?page=2 and not /api/
someResources/page/2.

• When an endpoint is paginated, and the pagination options are not given, then we return the full collection.
i.e. a single page with every possible instance of that resource. It’s therefore up to the client to use collection
endpoints responsibly and not over-load the backend.

• A paginated resource that has no items returns a single page, with it’s content attribute as empty.

• Resource’s which only ever return a single identified item are not paginated.

• For Java Service’s the query parameters should be defined by a Pageable and the response should be a Page.

Example Request (note that page is zero-based):

GET /api/requisitions/search?page=0&size=5&access_token=<sometoken>

Example Response:

{
"content": [
{
...
}

],
"totalElements": 13,
"totalPages": 3,
"last": false,
"numberOfElements": 5,
"first": true,

(continues on next page)
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(continued from previous page)

"sort": null,
"size": 5,
"number": 0

}

Postgres Database

For guidelines on how to write schema migrations using Flyway, see Writing Schema Migrations (Using Flyway).

• Each Independent Service should store its tables in its own schema. The convention is to use the Service’s name
as the schema. e.g. The Requisition Service uses the requisition schema

• Tables, Columns, constraints etc should be all lower case.

• Table names should be pluralized. This is to avoid most used words. e.g. orders instead of order

• Table names with multiple words should be snake_case.

• Column names with multiple words should be merged together. e.g. getFirstName() would map to
firstname

• Columns of type uuid should end in ‘id’, including foreign keys.

RBAC (Roles & Rights) Naming Conventions

• Names for rights in the system should follow a RESOURCE_ACTION pattern and should be all uppercase, e.g.
REQUISITION_CREATE, or FACILITIES_MANAGE. This is so all of the rights of a certain resource can be
ordered together (REQUISITION_CREATE, REQUISITION_AUTHORIZE, etc.).

i18n (Localization)

Transifex and the Build Process

OpenLMIS v3 uses Transifex for translating message strings so that the product can be used in multiple languages.
The build process of each OpenLMIS service contains a step to sync message property files with a corresponding
Transifex project. Care should be taken when managing keys in these files and pushing them to Transifex.

• If message keys are added to the property file, they will be added to the Transifex project, where they are now
available to be translated.

• If message keys or strings are modified in the property file, any translations for them will be lost and have to be
re-translated.

• If message keys are removed in the property file, they will be removed from the Transifex project. If they are
re-added later, any translations for them will be lost and have to be re-translated.

Naming Conventions

These naming conventions will be applicable for the messages property files.

• Keys for the messages property files should follow a hierarchy. However, since there is no official hierarchy
support for property files, keys should follow a naming convention of most to least significant.

• Key hierarchy should be delimited with a period (.).
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• The first portion of the key should be the name of the Independent Service.

• The second portion of the key should indicate the type of message; error for error messages, message for
anything not an error.

• The third and following portions will further describe the key.

• Portions of keys that don’t have hierarchy, e.g. a.b.code.invalidLength and a.b.code.
invalidFormat, should use camelCase.

• Keys should not include hyphens or other punctuation.

Examples:

• requisition.error.product.code.invalid - an alternative could be requisition.error.
productCode.invalid if code is not a sub-section of product.

• requisition.message.requisition.created - requisition successfully created.

• referenceData.error.facility.notFound - facility not found.

Note: UI-related keys (labels, buttons, etc.) are not addressed here, as they would be owned by the UI, and not the
Independent Service.

Testing

See the Testing Guide.

Docker

Everything deployed in the reference distribution needs to be a Docker container. Official OpenLMIS containers are
made from their respective containers that are published for all to see on our Docker Hub.

• Dockerfile (Image) best practices

• Keep Images portable & one-command focused. You should be comfortable publishing these images publicly
and openly to the DockerHub.

• Keep Containers ephemeral. You shouldn’t have to worry about throwing one away and starting a new one.

• Utilize docker compose to launch containers as services and map resources

• An OpenLMIS Service should be published in one image found on Docker Hub

• Services and Infrastructure that the OpenLMIS tech committee owns are published under the “openlmis” names-
pace of docker and on the Docker Hub.

• Avoid Docker Host Mounting, as this doesn’t work well when deploying to remote hosts (e.g. in CI/CD)

Gradle Build

Pertaining to the build process performed by Gradle.

• Anything generated by the Gradle build process should go under the build folder (nothing generated should
be in the src folder).
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Logging

Each Service includes the SLF4J library for generating logging messages. Each Service should be forwarding these
log statements to a remote logging container. The Service’s logging configuration should indicate the name of the
service the logging statement comes from and should be in UTC.

What generally should be logged:

• DEBUG - should be used to provide more information to developers attempting to debug what happened. e.g.
bad user input, constraint violations, etc

• INFO - to log processing progress. If the progress is for a developer to understand what went wrong, use
DEBUG. This tends to be more useful for performance monitoring and remote production debugging after a
client’s installation has failed.

Less used:

• FATAL - is reserved for programming errors or system conditions that resulted in the application (Service)
terminating. Developers should not be using this directly, and instead use ERROR.

• ERROR - is reserved for programming conditions or system conditions that would have resulted in the Service
terminating, however some safety oriented code caught the condition and made it safe. This should be reserved
for a global Service level handler that will convert all Exceptions into a HTTP 5xx level exception.

Audit Logging

OpenLMIS aims to create a detailed audit log for most all actions that occur within the system. In practice this means
that as a community we want all RESTful Resources (e.g. /api/facilities/{id}) to also have a full audit log
for every change (e.g. /api/facilities/{id}/auditLog) and for that audit log to be accessible to the user
in a consistent manner.

A few special notes:

• When a resource has line items (e.g. Requisition, Order, PoD, Stock Card, etc), the line item would not have its
own REST Resource, in that case if changes are made to a line item, those changes need to be surfaced in the
lint item’s parent. For example, if a change is made to a Requisition Line Item, then the audit log for that change
is available in the audit log for the Requisition, as one can’t retrieve through the API the single line item.

• There are a few cases where audit logs may not be required by default. These cases typically involve the
resource being very transient in nature: short drafts, created Searches, etc. When this is in question, explore the
requirements for how long the resource needs to exist and if it forms part of the system of record in the supply
chain.

Most Services use JaVers to log changes to Resources. The audits logs for individual Resources should be exposed
via endpoints which look as follows:

/api/someResources/{id}/auditLog

Just as with other paginated endpoints, these requests may be filtered via page and size query paramaters: /api/
someResources?page=0&size=10

The returned log may additionally be filtered by author and changedPropertyName query paramaters. The later
specifies that only changes made by a given user should be returned, whereas the later dictates that only changes
related to the named property should be shown.

Each /api/someResources/{id}/auditLog endpoint should return a 404 error if and only if the specified
{id} does not exist. In cases where the resource id exists but lacks an associated audit log, an empty array representing
the empty audit should be returned.
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Within production services, the response bodies returned by these endpoints should correspond to the JSON schema
defined by auditLogEntryArray within /resources/api-definition.yaml. It is recognized and accepted that this differs
from the schema intended for use by other collections throughout the system. Specifically, whereas other collections
which support paginated requests are expected to return pagination-related metadata (eg: “totalElements,” “total-
Pages”) within their response bodies, the responses proffered by /auditLog endpoints do not retur pagination related
data.

Testing Guide

This guide is intended to layout the general automated test strategy for OpenLMIS.

Test Strategy

OpenLMIS, like many software projects, relies on testing to guide development and prevent regressions. To effect this
we’ve adopted a standard set of tools to write and execute our tests, and categorize them to understand what types of
tests we have, who writes them, when they’re written, run, and where they live.

Types of Tests

The following test categories have been identified for use in OpenLMIS. As illustrated in this great slide deck, we
expect the effort/number of tests in each category to reflect the test pyramid:

1. Unit

2. Integration

3. Component

4. Contract

5. End-to-End

Unit Tests

• Who: written by code-author during implementation

• What: the smallest unit (e.g. one piece of a model’s behavior, a function, etc)

• When: at build time, should be /fast/ and targeted - I can run just a portion of the test suite

• Where: Reside inside a service, next to unit under test. Generally able to access package-private scope

• Why: to test fundamental pieces/functionality, helps guide and document design and refactors, protects against
regression

Unit Test Examples

• Every single test should be independent and isolated. Unit test shouldn’t depend on another unit test.

DO NOT:
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List<Item> list = new ArrayList<>();

@Test
public void shouldContainOneElementWhenFirstElementisAdded() {
Item item = new Item();
list.add(item);
assertEquals(1, list.size());

}

@Test
public void shouldContainTwoElementsWhenNextElementIsAdded() {
Item item = new Item();
list.add(item);
assertEquals(2, list.size());

}

• One behavior should be tested in just one unit test.

DO NOT:

@Test
public void shouldNotBeAdultAndShouldNotBeAbleToRunForPresidentWhenAgeBelow18() {
int age = 17;
boolean isAdult = ageService.isAdult(age);
assertFalse(isAdult);

boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident(age)
assertFalse(isAbleToRunForPresident);

}

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
int age = 17;
boolean isAdult = ageService.isAdult(age);
assertFalse(isAdult);

}

@Test
public void shouldNotBeAbleToRunForPresidentWhenAgeBelow18() {
int age = 17;
boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident(age)
assertFalse(isAbleToRunForPresident);

}

• Every unit test should have at least one assertion.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
int age = 17;
boolean isAdult = ageService.isAdult(age);

}

DO:
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@Test
public void shouldNotBeAdultWhenAgeBelow18() {
int age = 17;
boolean isAdult = ageService.isAdult(age);
assertFalse(isAdult);

}

• Don’t make unnecessary assertions. Don’t assert mocked behavior, avoid assertions that check the exact
same thing as another unit test.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
int age = 17;
assertEquals(17, age);

boolean isAdult = ageService.isAdult(age);
assertFalse(isAdult);

}

• Unit test has to be independent from external resources (i.e. don’t connect with databases or servers)

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
String uri = String.format("http://127.0.0.1:8080/age/", HOST, PORT);
HttpPost httpPost = new HttpPost(uri);
HttpResponse response = getHttpClient().execute(httpPost);
assertEquals(HttpStatus.ORDINAL_200_OK, response.getStatusLine().getStatusCode());

}

• Unit test shouldn’t test Spring Contexts. Integration tests are better for this purpose.

DO NOT:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = {"/services-test-config.xml"})
public class MyServiceTest implements ApplicationContextAware
{

@Autowired
MyService service;
...

@Override
public void setApplicationContext(ApplicationContext context) throws

→˓BeansException
{

// something with the context here
}

}

• Test method name should clearly indicate what is being tested and what is the expected output and con-
dition. The “should - when” pattern should be used in the name.

DO:
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@Test
public void shouldNotBeAdultWhenAgeBelow18() {
...

}

DO NOT:

@Test
public void firstTest() {
...

}

@Test
public void testIsNotAdult() {
...

}

• Unit test should be repeatable - each run should yield the same result.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
int age = randomGenerator.nextInt(100);
boolean isAdult = ageService.isAdult(age);
assertFalse(isAdult);

}

• You should remember about intializing and cleaning each global state between test runs.

DO:

@Mock
private AgeService ageService;
private age;

@Before
public void init() {
age = 18;
when(ageService.isAdult(age)).thenReturn(true);

}

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
boolean isAdult = ageService.isAdult(age);
assertTrue(isAdult);

}

• Test should run fast. When we have hundreds of tests we just don’t want to wait several minutes till all
tests pass.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
int age = 17;
sleep(1000);
boolean isAdult = ageService.isAdult(age);

(continues on next page)
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(continued from previous page)

sleep(1000);
assertFalse(isAdult);

}

Integration Tests

• Who: Code author during implementation

• What: Test basic operation of a service to persistent storage or a service to another service. When another
service is required, a test-double should be used, not the actual service.

• When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from build
to not slow development. Will be run in CI on every change.

• Where: Reside inside a service, separated from other types of tests/code.

• Why: Ensures that the basic pathways to a service’s external run-time dependancies work. e.g. that a db schema
supports the ORM, or a non-responsive service call is gracefully handled.

For testing controllers, they are divided up into unit and integration tests. The controller unit tests will be testing the
logic in the controller, while the integration tests will be mostly testing serialization/deserialization (and therefore do
not need to test all code paths). In both cases, the underlying services and repositories are mocked.

Component Tests

• Who: Code author during implementation

• What: Test more complex operations in a service. When another service is required, a test-double should be
used, not the actual service.

• When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from build
to not slow development. Will be run in CI on every change.

• Where: Reside inside a service, separated from other types of tests/code.

• Why: Tests interactions between components in a service are working as expected.

These are not integration tests, which strictly test the integration between the service and an external dependency.
These test the interactions between components in a service are working correctly. While integration tests just test the
basic pathways are working, component tests verify that, based on input, the output matches what is expected.

These are not contract tests, which are more oriented towards business requirements, but are more technical in nature.
The contract tests will make certain assumptions about components, and these tests make sure those assumptions are
tested.

Contract Tests

• Who: Code author during implementation, with input from BA/QA.

• What: Enforces contracts between and to services.

• When: Ran in CI.

• Where: Reside inside separate repository: openlmis-contract-tests.

• Why: Tests multiple services working together, testing contracts that a Service both provides as well as the
requirements a dependant has.
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The main difference between contract and integration tests: In contract tests, all the services under test are real,
meaning that they will be processing requests and sending responses. Test doubles, mocking, stubbing should not be
a part of contract tests.

Refer to this doc for examples of how to write contract tests.

End-to-End Tests

• Who: QA / developer with input from BA.

• What: Typical/core business scenarios.

• When: Ran in CI.

• Where: Resides in seperate repository.

• Why: Ensures all the pieces are working together to carry-out a business scenario. Helps ensure end-users can
achieve their goals.

Testing services dependent on external APIs

OpenLMIS is using WireMock for mocking web services. An exam-
ple integration test can be found here: https://github.com/OpenLMIS/openlmis-
example/blob/master/src/test/java/org/openlmis/example/WeatherServiceTest.java

The stub mappings which are served by WireMock’s HTTP server are placed under src/test/resources/mappings
and _src/test/resources/__files_ For instructions on how to create them please refer to http://wiremock.org/record-
playback.html

Testing Tools

• spring-boot-starter-test

– Spring Boot Test

– JUnit

– Mockito

– Hamcrest

• WireMock

• REST Assured

• raml-tester

Error Handling Conventions

OpenLMIS would like to follow error handling best practices, this document covers the conventions we’d like to see
followed in the various OpenLMIS components.
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Java and Spring

The Java community has a long-standing debate about the proper use of Exceptions. This section attempts to be prag-
matic about the use of exceptions - especially understanding the Spring community’s exception handling techniques.

Exceptions in Java are broken down into two categories: those that are recovearable (checked) and those where client
code can in no-way recover from the Exception (runtime). OpenLMIS strongly discourages the use of checked excep-
tions, and the following section discusses what is encouraged and why checked exceptions should be avoided.

A pattern for normal error-handling

Normal errors for the purpose of this document are things like input validation or other business logic constraints.
There are a number of sources that make the claim that these types of errors are not exceptional (i.e. bad user input is
to be expected normally) and therefore Java Exception’s shouldn’t be used. While that’s generally very good advice,
we will be using runtime exceptions (not checked exceptions) as long as they follow the best practices laid out here.

The reasoning behind this approach is two-fold:

• Runtime exceptions are used when client code can’t recover from their use. Typically this has been used for the
class of programming errors that indicate that the software encountered a completely unexpected programming
error for which it should immediately terminate. We expand this definition to include user-input validation and
business logic constraints for which further user-action is required. In that case the code can’t recover - it has
to receive something else before it could ever proceed, and while we don’t want the program to terminate, we
do want the current execution to cease so that it may pop back to a Controller level component that will convert
these exceptions into the relevant (non-500) HTTP response.

• Using Runtime exceptions implies that we never write code that catches them. We will use Spring’s
@ControllerAdvice which will catch them for us, but our code should have less “clutter” as it’ll be largely
devoid of routine error-validation handling.

Effectively using this pattern requires the following rules:

1. The Exception type (class) that’s thrown will map one-to-one with an HTTP Status code that we want to return,
and this mapping will be true across the Service. e.g. a throw ValidationException will always result
in the HTTP Status code 400 being returned with the body containing a “nice message” (and not a stacktrace).

2. The exception thrown is a sub-type of java.lang.RuntimeException.

3. Client code to a method that returns RuntimeException’s should never try to handle the exception. i.e. it should
not try {...} catch ...

4. The only place that these RuntimeExceptions are handled is by a class annotated @ControllerAdvice that
lives along-side all of the Controllers.

5. If the client code needs to report multiple errors (e.g. multiple issues in validating user input), then that collection
of errors needs to be grouped before the exception is thrown.

6. A Handler should never be taking one of our exception types, and returning a HTTP 500 level status. This
class is reserved specifically to indicate that a programming error has occurred.Reserving this directly allows
for easier searching of the logs for program-crashing type of errors.

7. Handler’s should log these exceptions at the DEBUG level. A lower-level such as TRACE could be used,
however others such as ERROR, INFO, FATAL, WARN, etc should not.

Example

The exception
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public class ValidationException extends RuntimeException { ... }

A controller which uses the exception

@Controller
public class WorkflowController {

@RequestMapping(...)
public WorkflowDraft doSomeWorkflow() {
...

if (someError)
throw new ValidationException(...);

...

return new WorkflowDraft(...);
}

}

The exception handler that’s called by Spring should the WorkflowController throw
ValidationException.

@ControllerAdvice
public class WorkflowExceptionHandler {
@ExceptionHandler(ValidationException.class)
@ResponseStatus(HttpStatus.BAD_REQUEST)
private Message.LocalizedMessage handleValidationException(ValidationException ve) {
...
logger.debug(ve);
return ve.getTheLocalizedMessage();
}

}

Exceptions - what we don’t want

Lets look at a simple example that is indicative of the sort of code we’ve been writing using exceptions. This example
consists of a web-endpoint that returns a setting for a given key, which hands off the work to an application service
layer that uses the key provided to find the given setting.

A controller (HTTP end-point) that is asked to return some setting for a given “key”

@RequestMapping(value = "/settings/{key}", method = RequestMethod.GET)
public ResponseEntity<?> getByKey(@PathVariable(value = "key") String key) {

try {
ConfigurationSetting setting = configurationSettingService.getByKey(key);
return new ResponseEntity<>(setting, HttpStatus.OK);

} catch (ConfigurationSettingException ex) {
return new ResponseEntity(HttpStatus.NOT_FOUND);

}
}

The service logic that finds the key and returns it (i.e. configurationSettingService above):
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public ConfigurationSetting getByKey(String key) throws ConfigurationSettingException
→˓{
ConfigurationSetting setting = configurationSettingRepository.findOne(key);
if (setting == null) {
throw new ConfigurationSettingException("Configuration setting '" + key + "' not

→˓found");
}
return setting;

}

In this example we see that the expected end-point behavior is to either return the setting asked for and an HTTP 200
(success), or to respond with HTTP 404 - the setting was not found.

This usage of an Exception here is not what we want for a few reasons:

• The Controller directly handles the exception - it has a try-catch block. It should only handle the successful path
which is when the exception isn’t thrown. We should have a Handler which is @ControllerAdvice.

• The exception ConfigurationSettingException doesn’t add anything - either semantically or func-
tionally. We know that this type of error isn’t that there’s some type of Configuration Setting problem,
but rather that something wasn’t found. This could more generically and more accurately be named a
NotFoundException. It conveys the semantics of the error and one single Handler method for the entire
Spring application could handle all NotFoundExceptions by returning a HTTP 404.

• It’s worth noting that this type of null return is handled well in Java 8’s Optional. We would still throw an
exception at the Controller so that the Handler could handle the error, however an author of middle-ware code
should be aware that they could use Optional instead of throwing an exception on a null immediately. This
would be most useful if many errors could occur - i.e. in processing a stream.

• This code is flagged by static analysis tools with the error that this exception should be “Either log or re-throw
this exception”. A lazy programmer might “correct” this by logging the exception, however this would result in
the log being permeated with noise from bad user input - which should be avoided.

How the API responds with validation error messages

What are Validation Error Messages?

In OpenLMIS APIs, validation errors can happen on PUT, POST, DELETE or even GET. When validation or per-
missions are not accepted by the API, invalid requests should respond with a helpful validation error message. This
response has an HTTP response body with a simple JSON object that wraps the message. Different clients may use
this message as they wish, and may display it to end-users.

The Goal: We want the APIs to respond with validation error messages in a standard way. This will allow the APIs
and the UI components to all be coded and tested against one standard.

When does this pattern apply?

When does this “validation error message” pattern apply? We want to apply this pattern for all of the error situations
where we return a HTTP response body with an error message. For more details about which HTTP status codes this
aligns with, see the ‘HTTP Status Codes’ section below.
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What do we return on Success?

In general, success responses should not include a validation message of the type specified here. This will eliminate
the practice which was done in OpenLMIS v2, EG:

PUT /requisitions/75/save.json
Response: HTTP 200 OK
Body: {"success":"R&R saved successfully!"}

On success of a PUT or POST, the API should usually return the updated resource with a HTTP 200 OK or HTTP
201 Created response code. On DELETE, if there is nothing appropriate to return, then an empty response body is
appropriate with a HTTP 204 No Content response code.

HTTP Status Codes

Success is generally a 2xx HTTP status code and we don’t return validation error messages on success. Generally,
validation errors are 4xx HTTP status codes (client errors). Also, we don’t return these validation error messages for
5xx HTTP status codes (server or network errors). We do not address 5xx errors because OpenLMIS software does
not always have control over what the stack returns for 5xx responses (those could come from NGINX or even a load
balancer).

Examples below show appropriate use of HTTP 403 and 422 status codes with validation error messages. The
OpenLMIS Service Style Guide includes further guidance on HTTP Status Codes that comes from Best Practices
for Designing a Pragmatic RESTful API.

Example: Permissions/RBAC

The API does a lot of permission checks in case a user tries to make a request without the needed permissions. For
example, a user may try to initiate a requisition at a facility where they don’t have permissions. That should generate
a HTTP 403 Forbidden response with a JSON body like this:

{
"message" : "Action prohibited because user does not have permission at the facility

→˓",
"messageKey" : "requisition.error.prohibited.noFacilityPermission"

}

When creating these error validation messages, we encourage developers to avoid repeating code. It may be appropri-
ate to write a helper class that generates these JSON validation error responses with a simple constructor.

We also don’t want developers to spend lots of time authoring wordy messages. It’s best to keep the messages short,
clear and simple.

Translation/i18n

Message keys are used for translations. Keys should follow our Style Guide i18n Naming Conventions.

The “messageKey” is the key into a property translation file such as a .properties file maintained using Transifex or a
similar tool.

The “messageKey” will be used with translation files in order to conduct translation, which we allow and support on
the server-side and/or the client-side. Any OpenLMIS instance may configure translation to happen in its services or
its clients.
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A service will use the “messageKey” to translate responses into a different language server-side in order to respond
in the language of choice for that OpenLMIS implementation instance. And/or a client/consumer may use the “mes-
sageKey” to translate responses into a language of choice.

The source code where a validation error is handled should have the “messageKey” only. The source code should not
have hard-coded message strings in English or any language.

Messages with Placeholders for Translation

Placeholders allow messages to be dynamic. For example, “Action prohibited because user {0} does not have permis-
sion {1} at facility {2}”.

The Transifex tool appears to support different types of placeholders, such as {0} or %s and %d. In OpenLMIS v2,
the MessageService (called the Notification Service in v3) uses placeholders to make email messages translate-able.
For an example, see the StatusChangeEventService.

Multiple errors in response

When validation is not accepted, we want to use the top level error message with section below with multiple field
errors. Every field error in response should contain message key and message for specific field rejected by validator.
Field errors can be nested. Instead of arrays, map should be returned with rejected field name as a key. When field is
an element of array, resource identifier should be used as the key, such as UUID or code.

{
"message": "Validation error occurred",
"messageKey": "requisition.error.validation.fail",
"fieldErrors": {
"comment": {

"message": "Comment is longer than 255 characters and can not be saved",
"messageKey": "requisition.comment.error.invalidLength"

},
"requisitionLineItems": {

"0c4b5efe-259c-44c9-8969-f157f778ee0f": {
"stockOnHand": {
"message": "Stock on hand can not be negative",
"messageKey": "requisition.error.validation.stockOnHand.cannotBeNegative"

}
}

}
}

}

Future: Arrays of Messages

In the future, we may extend these guidelines to support an array of multiple messages.

Future: Identifying Fields Where Validation Was Not Accepted

In the future, it may also be helpful to extend this to allow the error messages to be associated with a specific piece of
data. For example, if a Requisition Validation finds that line item quantities do not add up correctly, it could provide
an error message tied to a specific product (line item) and field. Often this kind of validation may be done by the client
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(such as in the AngularJS UI app), and the client can immediately let the end-user know about a specific field with a
validation error.

Future: Including Stack-Traces in Development Mode

In the future, it may be useful to be able to launch the entire application in a debug mode.In this mode errors returned
via the API might include a stacktrace or other context normally reserved for the server log. This would be a non-
default mode that developers could use to more easily develop the application.

Proposed RAML

schemas:
- localizedErrorResponse: |

{
"type": "object",
"$schema": "http://json-schema.org/draft-04/schema",
"title": "LocalizedErrorResponse",
"description": "Localized Error response",
"properties": {
"message": { "type": "string", "title": "error message" },
"messageKey": { "type": "string", "title": "key for translations" },
"fieldErrors": {
"type": "object",
"title": "FieldErrors",
"description": "Field errors"

}
},
"required": ["messageKey", "message"]

}

/requisitions:
/{id}:
put:

description: Save a requisition with its line items
responses:

403:
422:
body:
application/json:
schema: errorResponse

Service Health

In OpenLMIS’ Service Architecture it’s important that a Service be able to tell our Service Registry (Consul) when
it’s ready to accept new work and when it’s not. If the service doesn’t inform our Service Registry accurately, then
new requests for work might be routed to that service from the reverse proxy (Nginx) which won’t be fulfilled.

Spring Boot Actuator

In our Spring Boot based services there is a very handy project named Spring Boot Actuator that once enabled turns
on a number of useful production features. One of these is the /health endpoint.

To make use of this in OpenLMIS v3 architecture we will:
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1. Add Spring Boot Actuator to our Service.

2. Enable the /health endpoint.

3. Register this endpoint with Consul as a health check.

Adding Spring Boot Actuator to our Service

As simple as adding it as a dependency:

build.gradle:

dependencies {
...
compile "org.springframework.boot:spring-boot-starter-actuator"
...

}

Enabling the /health endpoint

May be done through our default configuration:

application.properties:

endpoints.enabled=false
endpoints.health.enabled=true

Note that we first disable all of the endpoints that Spring Boot Actuator adds to be conservative, we don’t need them
(yet). Next we ensure that the /health endpoint is enabled.

Registering /health with Consul (Service Registry)

First we must allow non-authenticated access to this resource:

ResourceServerSercurityConfiguration.java:

.antMatchers(
"/referencedata",
"/health",
"/referencedata/docs/**"

).permitAll()

Next we need to tell Consul that this endpoint should be used for a health check:

config.json:

"service": {
"Name": "referencedata",
"Port": 8080,
"Tags": ["openlmis-service"],
"check": {
"interval": "10s",
"http": "http://HOST:PORT/health"

}
},
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This Consul check directive will be registered with Consul, letting Consul know that every 10 seconds it should try
this /health endpoint and use the HTTP status to determine the Service’s availability.

And finally we’ll need to ensure that the registration script replaces HOST and PORT with the correct values when it
sends this to Consul:

consul/registration.js:

function registerService() {
service.ID = generateServiceId(service.Name);

if (service.check) {
var checkHttp = service.check.http;
checkHttp = checkHttp.replace("HOST", service.Address);
checkHttp = checkHttp.replace("PORT", service.Port);
service.check.http = checkHttp;

}

...
}

This commit has the change.

At this point you might be wondering why we left this endpoint unsecured and not mapped to some name which
is service specific. After all, every running service will use /health. What we did not do however is make this
endpoint routable by adding it to our RAML or registering it as a path for Consul. This means that our reverse proxy
will never try to take a HTTP request to /health and route it to any particular service. Only Consul will know of
this endpoint and try to access it through the network at the host and port which the Service registered itself with. No
client to our reverse proxy will be able to directly access a Service’s health endpoint.

Health and HTTP Status

The Consul check directive is looking for the following HTTP statuses:

• 2xx: Everything is okay, send more requests

• 429: Warning, too many requests. There is a problem, but still send more requests.

• Anything else: failed, not available for servicing requests

The /health endpoint naturally fulfills HTTP 200 when the Service is ready and also has the basics of how to
report when a service is down (e.g. if the database connection is down the endpoint will return a 5xx level error). This
endpoint can do more however. Spring Boot Actuator Health Information has more details about how custom code
can be written that modifies the health status returned. This could be especially useful if a Service has a dependancy
on another system (e.g. integration with ODK or DHIS2), another Service (e.g. Requisition needs Reference Data) or
another piece of infrastructure (e.g. sending emails, SMS, etc).

1.5.4 UI Conventions

See the UI Styleguide for conventions about how components look and function. See the Reference UI section under
Components to learn about the UI architecture, how to build and extend/customize.

UI Label Conventions

The following document outlines how content, labels and messages should be displayed in the OpenLMIS-UI. This
guide presents generalizations for how labels should be written and complex workflows should be organized.
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Content Conventions

The following are general stylistic rules for the OpenLMIS-UI, which implementers and developers should keep in
mind while crafting content.

Titles

Titles include page titles, report titles, headings within a page (H2, H3, etc), and the subject line of email notifcations.
Links in the main navigation menu are generally page titles. Most other strings that appear on-screen are Labels,
Buttons or others described further below.

Titles should be written so they describe a specific object and state. If there is a state that is being applied to the object
in a title, the state is first in the present tense. The first letter of each word in a title should be capitalized, except for
the articles of the sentence. Titles do not contain punctuation.

See APA article about title case for more guidance.

Examples Do: “Initiate Requisition” Do Not: “REQUISITION - INITIATE”

Labels

Labels are generally used in form elements to describe the content a user should input. Labels have the first letter of
the first word capitalized, and should not have any punctuation such as a colon.

Labels also include table column headers and dividers for sections or categories.

Note: Colons should be added using CSS pseudo-selector, if an implementation requires labels to be formatted with a
colon. As a community, we feel that less allows for easier customization.

Example Do: “First name” Do Not: “First Name:”

Buttons

Buttons should be used to refer to a user taking an action on an object, meaning there should always be a specific verb
followed by a subject. Buttons have the first letter of each word capitalized and don’t have any punctuation.

Example Do: “Search Facilities” Do Not: “SEARCH”

Messages

Messages represent a response from the system to a user. These strings should be written as a command, where the
first word is the action that has happened. The first letter of a message is capitalized, but there is no punctuation.

Example Do: “Failed to save user profile” Do Not: “Saving user profile failed.”

Confirmations

Confirmations are messages shown to the user to confirm that they actually want to take an action. These messages
should address the user directly and be phrased as a single sentence.

Example Do: “Are you sure you want to submit this requisition?” Do Not: “Submitting requisition, are you sure?
Please confirm.”
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Instructions

Instructions might be placed at the top of a form or after a confirmation to clarify the action a user is taking. These
should be written as full paragraphs.

Example Do: “Authorize this requisition to send the requisition to the approval workflow.” Do Not: “Authorize requi-
sition — send to approval workflow”

Information Architecture

In the context of the OpenLMIS-UI, information architecture refers to how a person finds and edits data by navigating
between screens and states. This document provides guidelines used in the OpenLMIS-UI, and while it is preferential
to stick to these guidelines, there will be exceptions. Please document why exceptions have been made.

The OpenLMIS-UI uses a shallow information architecture, meaning each screen should have a single focused goal
for a person managing logistical information. For example, there is an “Approve Requisitions” screen, where the
only requisitions that are displayed are requisitions that need to be approved that the current user has permissions to
approve. By keeping the information architecture of the OpenLMIS-UI shallow, we hope to provide a user experience
that is efficient.

To support our shallow information architecture we:

• Avoid “nested” navigation, meaning we prefer a single long list of pages instead of “folders within folders.”

• Use strong defaults, because we don’t want to force a user to make lots of choices before getting to work. Ideally
a user can navigate to a page and start doing work.

See the OpenLMIS Generic Workflows in Balsamiq for an annotated set of mockups that show and explain these
conventions. In addition, see the Mockup Guidelines in the OpenLMIS wiki.

Generic Page Types

The following page types are guidelines for how to discuss the screens and pages that make up workflows that are
implemented in the OpenLMIS-UI. Every page type should meet the following rules:

• Each page has a unique URL address

• Each page has a single purpose

List View

A list view is a screen with a paginated list of items from the OpenLMIS Services. A list could be a list of users,
products, or orders that need to be fulfilled at a facility.

All list views should:

• Attempt to show the current state of an OpenLMIS Service

• Avoid editing list items directly in the list (editing should be done in a detail or document view)

See the List View in Balsamiq for annotated examples.

Detail View

A detail view most often shows editable details of an item from the proceeding list view. Our recommendation is to
show item details inside a model, so a user doesn’t lose context of the list.
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Detail views should focus on a single set of data or a single action to an object. For example, on the CCE Inventory
page, a user is presented with a list view of CCE Inventory items, and from this view there are two separate detail views.
The first is a generic view for the history of that CCE Inventory item, while the second is a detail view specifically
focused on updating the functional status for the inventory item.

An example mockup for Detail Views is included in the List View in Balsamiq.

Document View

Document views represent a complex item, like a requisition or proof of delivery, and focuses on making these items
editable. A document view is generally navigated to from a list view.

Document views should:

• Function when the browser is offline

• Cache all information that is needed on the page so the editing experience is fast and responsive for a user

• Not implement pagination for tables of information, but rather show a long continuous table so the user feels it
is a single large document

See the Document View in Balsamiq for annotated examples.

Navigation

In the OpenLMIS-UI, a user generally navigates from screen to screen where:

• Each screen has a unique URL

• The screen is one of our view type (above)

The largest piece of navigation in the OpenLMIS-UI is the header navigation that displays links to specific views and
workflows. There are other forms of navigation, like the Program and Facility Navigation (which is detailed below).

Many screens will implement filter and sort controls that will change how information is shown in a view, but doesn’t
actually represent a navigation change. Currently, in the OpenLMIS-UI it is most common that a list view will
implement both a sort and filter control, while a document view will only show a filter control. Filters and sorts are
included in the List View in Balsamiq.

Filter Controls

A filter modifies information shown on a page. Filters are always optional, and should never be a primary feature in a
screen. If a user is going to accomplish a task, the filter helps the user accomplish the task quicker – but should never
be the only way to accomplish the task.

If there is multiple filter criteria, the criterion should be combined using conjunctional logic (ie “AND” not “OR”).

If a filter is required, or a primary focus of the entire screen, it should be redesigned to be incorporated into persistent
page navigation.

Sort

Sorts refer to how a list of items are ordered within a table or list. Every list should have a sort order presented to the
user, so the user can understand how the document is organized.

When the sort order is changed, no items in the list should be removed – unlike a filter control that is only concerned
with removing items from a list.
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Program and Facility Selection

Many workflows in the OpenLMIS-UI require a user to select both a facility and program they are working in before
any data is displayed. This is a form of navigation, but it can be much more complicated than a list of links.

In the OpenLMIS-UI we have created an AngularJS component to keep facility and program selection consistent.

Program and Facility Selection works like this:

• A user is presented with the option of selecting the home facility or selecting one of their supervised facilities

• Home facility is the default selection, unless the user doesn’t have a home facility, and then the option should
be hidden

• If the user doesn’t have supervised facilities, that option is hidden

• If the home facility is selected, the user must then select a program that is supported by that facility

• If the supervised facility option is selected, the user must first select a program, then select a facility that supports
that program.

Some list views do not require a user to select both a program and facility, but instead provide an optional filter to help
the user drill in on a sub-set of the list. In those cases, the selection rules above don’t apply. Ideally, users will only be
shown lists of programs and facilities they have access to.

UI Coding Conventions

This document describes the desired formatting to be used within the OpenLMIS-UI repositories. Many of the con-
ventions are adapted from John Papa’s Angular V1 styleguide, SMACSS by Jonathan Snook, and Jens Meiert’s main-
tainability guide.

General

The following conventions should be applied to all sections of UI development:

• All intentation should be 4 spaces

• Legacy code should be refactored to meet coding conventions

• No thrid party libraries should be included in a OpenLMIS-UI repository

File Structure

All file types should be organized together within the src directory according to functionality, not file type — the
goal is to keep related files together.

Use the following conventions:

• File names are lowercase and dash-seperated

• Files in a directory should be as flat as possible (avoid sub-directories)

• If there are more than 12 files in a directory, try to divide files into subdirectories based on functional area
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Naming Convention

In general we follow the John-Papa naming conventions. Later sections go into specifics about how to name a specific
file type, while this section focusses on general naming and file structure.

Generally, all file names should use the following format specific-name.file-type.ext where:

• specific-name is a dash-separated name for specific file-type

• file-type is the type of object that is being added (ie ‘controller’, ‘service’, or ‘layout’)

• ext is the extension of the file (ie ‘.js’, ‘.scss’)

Folder structure should aim to follow the LIFT principal as closely as possible, with a couple extra notes:

• There should only be one *.module.js file per directory hiearchy

• Only consider creating a sub-directory if file names are long and repatitive, such that a sub-directory would
improve meaning Each file type section below has specifics on their naming conventions

Javascript Guidelines

Almost everything in the OpenLMIS-UI is Javascript. These are general guidelines for how to write and test your
code.

General conventions:

• All code should be within an immedately invoked scope

• ONLY ONE OBJECT PER FILE

• Variable and function names should be written in camelCase

• All Angular object names should be written in CamelCase

Documentation

To document the OpenLMIS-UI, we are using ngDocs built with grunt-ngdocs. See individual object descriptions for
specifics and examples of how to document that object type.

General rules

• any object’s exposed methods or variables must be documented with ngDoc

• @ngdoc annotation specifies the type of thing being documented

• as ‘Type’ in documentation we should use:

• Promise

• Number

• String

• Boolean

• Object

• Event

• Array
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• Scope

• in some cases is allowed to use other types i.e. class names like Requisition

• all description blocks should be sentence based, all of sentences should start with uppercase letter and end with
‘.’

• before and after description block (if there is more content) there should be an empty line

• all docs should be right above the declaration of method/property/component

• when writing param/return section please keep all parts(type, parameter name, description) start at the same
column as it is shown in method/property examples below

• please keep the order of all parameters as it is in examples below

General Object Documentation

Regardless of the actual component’s type, it should have ‘@ngdoc service’ annotation at the start, unless the specific
object documentation says otherwise. There are three annotations that must be present:

• ngdoc definition

• component name

• and description

/**
* @ngdoc service

* @name module-name.componentName

*
* @description

* Component description.

*/

Methods

Methods for all components should have parameters like in the following example:

/**
* @ngdoc method

* @methodOf module-name.componentName

* @name methodName

*
* @description

* Method description.

*
* @param {Type} paramsName1 param1 description

* @param {Type} paramsName2 (optional) param2 description

* @return {Type} returned object description

*/

Parameters should only be present when method takes any. The same rule applies to return annotation. If the parameter
is not required by method, it should have “(optional)” prefix in the description.
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Properties

Properties should be documented in components when they are exposed, i.e. controllers properties declared in ‘vm’.
Properties should have parameters like in the following example:

/**
* @ngdoc property

* @propertyOf module-name.componentName

* @name propertyName

* @type {Type}

*
* @description

* Property description.

*/

Constants

Constants are Javascript variables that won’t change but need to be resued between multiple objects within an Angular
module. Using constants is important because it becomes possible to track an objects dependencies, rather than use
variables set on the global scope.

It’s also useful to wrap 3rd party objects and libraries (like jQuery or bootbox) as an Angular constant. This is useful
because the dependency is declared on the object. Another useful feature is that if the library or object isn’t included,
Angualr will throw a single verbose error message.

Add rule about when its ok to add a group of constants – if a grouping of values, use a plural name

Conventions:

• All constant variable names should be upper case and use underscores instead of spaces (ie VARIABLE_NAME)

• If a constant is only relivant to a single Angular object, set it as a variable inside the scope, not as an Angular
constant

• If the constant value needs to change depending on build variables, format the value like @@VARI-
ABLE_VALUE, and which should be replaced by the grunt build process if there is a matching value

• Wrap 3rd party services as constants, if are not already registered with Angular

Replaced Values

@@ should set own default values

Factory

Factories should be the most used Angular object type in any application. John Papa insists that factories serve a single
purpose and should be extended by variabled they are called with.

This means that factories should generally return a function that will return an object or set of objects that can be
manipulated. It is common for a factory to include methods for interacting with a server, but this isn’t necessary.

Should be used with UI-Router resolves, and get additional arguments
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Naming Convention

specificNameFactory

Factories should always be named lowercase camelCase. To avoid confussion between created objects and factories,
all factories should have the word’Factory’ appended to the end (this disagrees with John-Papa style).

Example

angular.module('openlmis-sample')
.factory('sampleFactory', sample);

sample.$inject = [];
function sample(){

var savedContext;

return {
method: method,
otherMethod: otherMethod

}
}

Unit Testing Conventions Test a factory much like you would test a service, except be sure to:

• Declare a new factory at the start of every test

• Exercise the produced object, not just the callback function

Interceptor

This section is about events and messages, and how to modify them.

HTTP Interceptors are technically factories that have been configured to ‘intercept’ certain types of requests in Angular
and modify their behavior. This is recommended because other Angular objects can use consistent Angular objects,
reducing the need to write code that is specialized for our own framework.

Keep all objects in a single file - so its easier to understand the actions that are being taken

The Angular guide to writting HTTP Interceptors is here

General Conventions

• Write interceptors so they only chanage a request on certain conditions, so other unit tests don’t have to be
modified for the interceptors conditions

• Don’t include HTTP Interceptors in openlmis-core, as the interceptor might be injected into all other unit tests
— which could break everything

Unit Testing Conventions

The goal when unit testing an interceptor is to not only test input and output transformation functions, but to also make
sure the interceptor is called at an appropriate time.
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Javascript Class

Put all direct business logic in a pure javascript class.

Pure javascript classes should only be used to ease the manipulation of data, but unlike factories, these object shouldn’t
create HTTP connections, and only focus on a single object.

Javascript classes should be injected and used within factories and some services services that have complex logic.
Modules should be able to extend javascript classes by prototypical inheritance.

Helps with code reusability

Requisition/LineItem is good example

Naming Conventions

SampleName

Classes should be uppercase CamelCased, which represents that they are a class and need to be instantiated like an
object (ie new SampleName()).

Routes

Routing logic is defined by UI-Router, where a URL path is typically paired with an HTML View and Controller.

Use a factory where possible to keep resolve statements small and testable

General Conventions

• The UI-Router resolve properties are used to ease loading on router

• Routes should define their own views, if their layout is more complicated than a single section

Service

John Papa refers to services as Singletons, which means they should only be used for application information that has
a single instance. Examples of this would include the current user, the application’s connection state, or the current
library of localization messages.

Conventions

• Services should always return an object

• Services shouldn’t have their state changed through properties, only method calls

Naming Convention

nameOfServiceService

Always lowercase camelCase the name of the object. Append ‘Service’ to the end of the service name so developers
will know the object is a service, and changes will be persisted to other controllers.
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Unit Testing Conventions

• Keep $httpBackend mock statements close to the specific places they are used (unless the statement is reusable)

• Use Jasmine’s spyOn method to mock the methods of other objects that are used

• In some cases mocking an entire AngularJS Service, or a constant, will be required. This is possible by using
AngularJS’s $provide object within a beforeEach block. This would look like

beforeEach(module($provide){
// mock out a tape recorder service, which is used else where
tape = jasmine.createSpyObj('tape', ['play', 'pause', 'stop', 'rewind']);

// overwrite an existing service
$provide.service('TapeRecorderService', function(){

return tape;
});

});

AngularJS Conventions

This document accompanies the UI Coding Conventions. It gives specific guidance for AngularJS modules, con-
trollers, directives, and filters.

Modules

Modules in angular should describe and bind together a small unit of functionality. The OpenLMIS-UI build process
should construct larger module units from theses small units.

Documentation

Docs for modules must contain the module name and description. This should be thought of as an overview for the
other objects within the module, and where appropriate gives an overview of how the modules fit together.

/**
* @module module-name

*
* @description

* Some module description.

*/

Controller

Controllers are all about connecting data and logic from Factories and Services to HTML Views. An ideal controller
won’t do much more than this, and will be as ‘thin’ as possible.

Controllers are typically specific in context, so as a rule controllers should never be reused. A controller can be linked
to a HTML form, which might be reused in multiple contexts — but that controller most likely wouldn’t be applicable
in other places.

It is also worth noting that John Papa insists that controllers don’t directly manipulate properties in $scope, but rather
the ControllerAs syntax should be used which injects the controller into a HTML block’s context. The main rationale
is that it makes the $scope variables less cluttered, and makes the controller more testable as an object.
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Conventions

• Should be only object changing application $state

• Is used in a single context

• Don’t use the $scope variable EVER

• Use ControllerAs syntax

• Don’t $watch variables, use on-change or refactor to use a directive to watch values

Unit Testing

• Set all items that would be required from a route when the Controller is instantiated

• Mock any services used by the controller

Documentation

The only difference between controllers and other components is the ‘.controller:’ part in the @name annotation. It
makes controller documentation appear in controllers section. Be sure to document the methods and properties that
the controller exposes.

/**
* @ngdoc service

* @name module-name.controller:controllerName

*
* @description

* Controller description.

*
*/

Directive

Directives are pieces of HTML markup that have been extended to do a certain function. This is the only place where
it is reasonable to manipulate the DOM.

Make disticntion between directive and component – components use E tag and isolate scope, directive use C and
never isolate scope

Conventions

• Restrict directives to only elements or attributes

• Don’t use an isolated scope unless you absolutely have to

• If the directive needs extenal information, use a controller — don’t manipulate data in a link function

76 Chapter 1. Contents:



OpenLMIS Documentation, Release 3.0

Unit Testing

The bit secrect when unit testing a directive is to make sure to use the $compile function to return an element that is
extended with jQuery. Once you have this object you will be able to interact with the directive by clicking, hovering,
or triggering other DOM events.

describe('SampleDirective', function(){
it('gets compiled and shows the selected item name', function($compile,

→˓$rootScope){
var scope = $rootScope.$new();
scope['item'] = {

name: "Sample Title"
};
var element = $compile("<sample-directive selected='item'></sample-directive>

→˓")(scope);

expect(element.text()).toBe("Sample Title");
});
it('responds to being clicked', function($compile, $rootScope){

var element = $compile("<sample-directive selected='item'></sample-directive>
→˓")($rootScope.$new());

// check before the action
expect(element.text()).toBe("No Title");

element.click();
// check to see the results of the action
// this could also be looking at a spy to see what the values are
expect(element.text()).toBe("I was clicked");

});
});

Documentation

Directive docs should have well described ‘@example’ section.

Directive docs should always have ‘@restrict’ annotation that takes as a value one of: A, E, C, M or any combination
of those. In order to make directive docs appear in directives section there needs to be ‘.directive:’ part in @name
annotation.

/**
* @ngdoc directive

* @restrict A

* @name module-name.directive:directiveName

*
* @description

* Directive description.

*
* @example

* Short description of how to use it.

* ```

* <div directiveName></div>

* ```

* Now you can show how the markup will look like after applying directive code.

* ```

* <div directiveName>
(continues on next page)
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(continued from previous page)

* <div>something</div>

* </div>

* ```

*/

Extending a Directive

You can extend a directive by using AngularJS’s decorator pattern. Keep in mind that a directive might be applied to
multiple places or have multiple directives applied to the same element name.

angular.module('my-module')
.config(extendDirective);

extendDirective.$inject = ['$provide'];
function extendDirective($provide) {

// NOTE: This method has you put 'Directive' at the end of a directive name
$provide.decorator('OpenlmisInvalidDirective', directiveDecorator);

}

directiveDecorator.$inject = ['$delegate'];
function directiveDecorator($delegate) {

var directive = $delegate[0], // directives are returned as an array
originalLink = directive.link;

directive.link = function(scope, element, attrs) {
// do something
originalLink.apply(directive, arguments); // do the original thing
// do something after

}

return $delegate;
}

Filters

Use an AngularJS filter if:

• You need to do complex formatting

• You need to render value in HTML, and it doesn’t make sense to include in a controller.

Documentation

Filter docs should follow the pattern from example below:

/**
* @ngdoc filter

* @name module-name.filter:filterName

*
* @description

* Filter description.

(continues on next page)
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*
* @param {Type} input input description

* @param {Type} parameter parameter description

* @return {Type} returned value description

*
* @example

* You could have short description of what example is about etc.

* ```

* <div>{{valueToBeFiltered | filterName:parameter}}</div>

* ```

*/

It is a good practice to add example block at the end to make clear how to use it. As for parameters the first one should
be describing input of the filter. Please remember of ‘.filter:’ part. It will make sure that this one will appear in filters
section.

Unit Testing Guidelines

A unit tests has 3 goals that it should accomplish to test a javascript object:

• Checks success, error, and edge cases

• Tests as few objects as possible

• Demonstrates how an object should be used

With those 3 goals in mind, its important to realize that the variety of AngularJS object types means that the same
approact won’t work for each and every object. Since the OpenLMIS-UI coding conventions layout patterns for
different types of AngularJS objects, it’s also possible to illustrate how to unit test objects that follow those conventions.

Check out AngularJS’s unit testing guide, its well written and many of out tests follow their styles.

Here are some general rules to keep in mind while writing any unit tests:

• Keep beforeEach statements short and to the point, which will help other’s read your statements

• Understand how to use Spies in Jasmine, they can help isolate objects and provide test cases

HTML Markup Guidelines

Less markup is better markup, and semantic markup is the best.

This means we want to avoid creating layout specific markup that defines elements such as columns or icons. Non-
semantic markup can be replicated by using CSS to create columns or icons. In some cases a layout might not be
possible without CSS styles that are not supported across all of our supported browsers, which is perfectly acceptiable.

Here is a common pattern for HTML that you will see used in frameworks like Twitter’s Bootstrap (which we also
use)

<li class="row">
<div class="col-md-9">

Item Name
</div>
<div class="col-md-3">

<a href="#" class="btn btn-primary btn-block">
<i class="icon icon-trash"></i>
Delete

(continues on next page)
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</a>
</div>

</li>
<div class="clearfix"></div>

The above markup should be simplified to:

<li>
Item Name
<button class="trash">Delete</button>

</li>

This gives us simpler markup, that could be restyled and reused depending on the context that the HTML section is
inserted into. We can recreate the styles applied to the markup with CSS such as:

• A ::before pseudo class to display an icon in the button

• Using float and width properties to correctly display the button

• A ::after pseudo class can replace any ‘clearfix’ element (which shouldn’t exist in our code)

See the UI-Styleguide for examples of how specific elements and components should should be constructed and used.

HTML Views

Angular allows HTML files to have variables and simple logic evaluated within the markup.

A controller that has the same name will be the reference to vm, if the controller is different, don’t call it vm

General Conventions

• If there is logic that is more complicated than a single if statement, move that logic to a controller

• Use filters to format variable output — don’t format variables in a controller

HTML Form Markup

A goal for the OpenLMIS-UI is to keep busniess logic separated from styling, which allows for a more testable and
extenable platform. Creating data entry forms is generally where logic and styling get tangled together because of the
need to show error responses and validation in meaningful ways. AngularJS has built-in features to help foster this
type of separation, and OpenLMIS-UI extends AngularJS’s features to a basic set of error and validation featrues.

The goal here is to attempt to keep developers and other implementers from creating their own form submission and
validation - which is too easy in Javascript frameworks like AngularJS.

An ideal form in the OpenLMIS-UI would look like this:

<form name="exampleForm" ng-submit="doTheThing()">
<label for="exampleInput">Example</label>
<input id="exampleInput" name="exampleInput" ng-model="example" required />
<input type="submit" value="Do Thing" />

</form>

This is a good form because:

• There is a name attribute on the form element, which exposes the FormController
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• The input has a name attribute, which allow for validation passed to the FormController to be passed back to the
correct input

• ng-submit is used rather than ng-click on a button

SASS & CSS Formatting Guidelines

General SASS and CSS conventions:

• Only enter color values in a variables file

• Only enter pixel or point values in a variables file

• Variable names should be lowercase and use dashes instead of spaces (ie: $sample-variable)

• Avoid class names in favor of child element selectors where ever possible

• Files should be less than 200 lines long

• CSS class names should be lowercase and use dashes instead of spaces

SMACSS

The CSS styles should reflect the SMACSS CSS methodology, which has 3 main sections — base, layout, and mod-
ule. SMACSS has other sections and tennants, which are useful, but are not reflected in the OpenLMIS-UI coding
conventions.

Base

CSS styles applied directly to elements to create styles that are the same throughout the application.

Layout

CSS styles that are related primarly to layout in a page — think position and margin, not color and padding — these
styles should never be mixed with base styles (responsive CSS should only be implemented in layout).

Module

This is a css class that will modify base and layout styles for an element and it’s sub-elements.

SASS File-Types

Since SASS pre-processes CSS, there are 3 SCSS file types to be aware of which are processed in a specific order to
make sure the build process works correctly.

Variables

A variable file is either named ‘variables.scss’ or matches ‘*.variables.scss’

Varriables files are the first loaded file type and include any variables that will be used through out the application —
There should be as few of these files as possible.
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The contents of a varriables file should only include SASS variables, and output no CSS at anypoint.

There is no assumed order in which varriables files will be included, which means:

• Varriable files shouldn’t have overlapping varriables

• Implement SASS’s variable default (!default)

Mixins

A mixin file matches the following pattern *.mixin.scss

Mixins in SASS are reusable functions, which are loaded second in our build process so they can use global variables
and be used in any other SCSS file.

There should only be one mixin per file, and the file name should match the function’s name, ie: ‘simple-
function.mixin.scss’

All Other SCSS and CSS Files

All files that match ‘.scss’ or ‘.css’ are loaded at the same time in the build process. This means that no single file
can easily overwrite another files CSS styles unless the style is more specific or uses !imporant — This creates the
following conventions:

• Keep CSS selectors as general as possible (to allow others to be more specific)

• Avoid using !important

To keep file sizes small, consider breaking up files according to SMACSS guidelines by adding the type of classes in
the file before .scss or .css (ie: navigation.layout.scss)

1.5.5 Performance

Performance Testing

OpenLMIS focuses on performance metrics that are typical in web-applications:

• Calls to the server - how many milliseconds does this single operation take, and is the memory usage reasonable.

• Network load - how large are the resources returned from the server. Typically OpenLMIS is designed to work
in network-constrained locations, so the size, in bytes, of each resource is important.

• The number of calls the Reference UI makes - again networks being what they, we want to minimize the number
of connections that are made to accomplish a user workflow as each connection adds overhead.

• Size of the “working” data set. Here working data is defined as the data that’s needed for a user to accomplish a
task. Examples are typically Reference Data: # of Products, # of Facilities, # of Users, etc. Though also the # of
Requisitions or # of Stock Cards might factor into a user’s working data. Since OpenLMIS typically manages
countries, it’s important that we’re efficient in managing country-level data sets.

There are some areas of Performance however that OpenLMIS typically doesn’t focus as much on:

• Scaling - typically we’re not concerned with tens of thousands of people needing to use the system concurrently.
Likewise we don’t typically worry yet about surges or dips in user activity requiring more or less resources to
serve those users.
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Getting Started

OpenLMIS uses Apache JMeter to test RESTful endpoints. We use Taurus, and it’s YAML format, to write our test
scenarios and generate reports which our CI server can present as an artifact of every successful deployment to our
CD test server.

Keeping to our conventions, Taurus is used through a Docker image, with a simple script located at ./perfor-
mance/test.sh with tests in the directory ./performance/tests/ of a Service. Any *.yml file in that test directory will
be fed to Taurus to be used against https://test.openlmis.org.

Running test.sh will place JMeter output as well as Taurus output under ./build/performance-artifacts/. The file
stats.xml has the final summary performance metrics. Files of note when developing test scenarios:

• error-N.jtl - Contains errors and requests that led to those errors from the HTTP server.

• JMeter-N.err - Contains JMeter errors where JMeter didn’t understand the test scenario.

• modified_requests-N.jmx - Contains the generated JMeter requests (after Taurus generation).

• kpi-N.jtl - Individual metrics of a test scenario.

Running in CI

Tests run in a Jenkin’s Job that ends in -performance. This job is run as part of each Service’s build pipeline that
results in a deployment to the test server.

The reports are presented using Performance Plugin. When looking at this report you’ll see:

• A graph that shows all of the endpoints (requests) over time.

• A report for a build which includes an average over time, as well as a table showing KPIs of each request.

A simple Scenario (with authentication)

Nearly all of our RESTful resources require authentication, in this example we’ll show a basic test scenario that
includes authentication. The syntax and features used here are documented at Taurus’ page on the JMeter executer.

execution:
- concurrency: 1
hold-for: 1m
scenario: users-get-one

scenarios:
get-user-token:
requests:

- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetUserToken
headers:
Authorization: Basic ${__base64Encode(${__P(basic-auth)})}

body:
grant_type: password
username: ${__P(username)}
password: ${__P(password)}

extract-jsonpath:
access_token:
jsonpath: $.access_token

users-get-one:

(continues on next page)
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requests:
- include-scenario: get-user-token
- url: ${__P(base-uri)}/api/users/a337ec45-31a0-4f2b-9b2e-a105c4b669bb

method: GET
label: GetAdministratorUser
headers:
Authorization: Bearer ${access_token}

The execution block defines for our test scenario users-get-one that runs 1 concurrent user, for one minute. Notice that
this definition is for the simplest of test executions - 1 user, run it enough times to get a useful sampling. We use this
sort of test execution to first get a sense of what our endpoint’s single-user characteristics are.

Next notice that we have two scenarios defined:

1. get-user-token - this is a reusable scenario, which gets a basic user authentication token, and through the extract-
jsonpath saves it to a variable named access_token.

2. users-get-one - this is the test scenario we’re primarily interested in: exercise the /api/users/{a specific users
uuid}. We pass the previously obtained access_token through the HTTP request’s headers.

Summary

• First test the most basic of environments: 1 user, enough times to get useful sample size.

• Re-use the scenario to obtain an access_token using include-scenario.

• It’s generally OK to use demo-data identifiers (the user’s UUID) - though it couples the test to the demo-data, it
will provide consistent results.

• Give each request a clear, semantic label. This will be used later in pass-fail criteria.

Testing collections

To the simple Scenario we’re going to now test the performance of returning a collection of a resource:

users-search-one-page:
requests:
- include-scenario: get-user-token
- url: ${__P(base-uri)}/api/users/search?page=1&size=10

method: POST
label: GetAUserPageOfTen
body: '{}'
headers:

Authorization: Bearer ${access_token}
Content-Type: application/json

Here we’re testing the Users resource by asking for 1 page of 10 users.

Summary

• When testing the performance of collections, the result will be influenced by the number of results returned.
Due to this prefer to test a paginated resource, and always ask for a number that exists (i.e. don’t ask for 50
when demo-data only has 40).

• Searching often requires a POST, in this case the query parameters must be in the URL.
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Testing complex workflows

A complex workflow might be:

1. GET a list of periods for which requisitions may be initiated.

2. Create a new Requisition resource by POSTing with the previously returned periods available.

3. DELETE the previously created Requisition resource, so that we may test again.

initiate-requisition:
requests:
- url: ${__P(base-uri)}/api/oauth/token

method: POST
label: GetUserToken
headers:

Authorization: Basic ${__base64Encode(${__P(user-auth)})}
body:

grant_type: password
username: ${__P(username)}
password: ${__P(password)}

extract-jsonpath:
access_token:
jsonpath: $.access_token

# program = family planning, facility = comfort health clinic
- url: ${__P(base-uri)}/api/requisitions/periodsForInitiate?programId=10845cb9-

→˓d365-4aaa-badd-b4fa39c6a26a&facilityId=e6799d64-d10d-4011-b8c2-0e4d4a3f65ce&
→˓emergency=false

method: GET
label: GetPeriodsForInitiate
headers:

Authorization: Bearer ${access_token}
extract-jsonpath:

periodUuid:
jsonpath: $.[:1]id

jsr223:
script-text: |
String uuid = vars.get("periodUuid");
uuid = uuid.replaceAll(/"|\[|\]/, "");
vars.put("periodUuid", uuid);

- url: ${__P(base-uri)}/api/requisitions/initiate?program=10845cb9-d365-4aaa-badd-
→˓b4fa39c6a26a&facility=e6799d64-d10d-4011-b8c2-0e4d4a3f65ce&suggestedPeriod=$
→˓{periodUuid}&emergency=false

method: POST
label: InitiateNewRequisition
headers:

Authorization: Bearer ${access_token}
Content-Type: application/json

extract-jsonpath:
reqUuid:
jsonpath: $.id

jsr223:
script-text: |
String uuid = vars.get("reqUuid");
uuid = uuid.replaceAll(/"|\[|\]/, ""); # remove quotes and []
vars.put("reqUuid", uuid);

- url: ${__P(base-uri)}/api/requisitions/${reqUuid}
method: DELETE
label: DeleteRequisition

(continues on next page)
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headers:
Authorization: Bearer ${access_token}

Summary

• When creating a new RESTful resource (e.g. PUT or POST), we may need to clean-up after ourselves in order
to run more than one test.

• JSR223 blocks allow us to execute basic Groovy (default). This can be especially useful when you need to
clean-up a JSON result from a previous response, such as a UUID, to use in the next request.

Simple stress testing

As mentioned, OpenLMIS performance tests tend to focus first on basic execution environments where we’re only
testing 1 user interaction at a time. However there is a need to do basic stress testing, especially for endpoints which
are used frequently. For example we’ve seen the authentication resource used repeatedly in all our previous examples.
Lets stress test it.

modules:
local:
sequential: true

execution:
- concurrency: 10
hold-for: 2m
scenario: get-user-token

- concurrency: 50
hold-for: 2m
scenario: get-service-token

scenarios:
get-user-token:
requests:

- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetUserToken
headers:
Authorization: Basic ${__base64Encode(${__P(user-auth)})}

body:
grant_type: password
username: ${__P(username)}
password: ${__P(password)}

get-service-token:
requests:

- url: ${__P(base-uri)}/api/oauth/token
method: POST
label: GetServiceToken
headers:
Authorization: Basic ${__base64Encode(${__P(service-auth)})}

body:
grant_type: client_credentials

Here we’ve defined 2 tests:
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1. Authenticate as if you’re a person.

2. Authenticate as if you’re another Service (a Service token).

The stress testing here introduces important changes in our execution block:

- concurrency: 10
hold-for: 2m
scenario: get-user-token

Instead of defining 1 user, here we’ll have 10 concurrent ones. Instead of running the test for 1 minute, we’re going to
run the test as many times as we can for 2 minutes. For further options see the Taurus’ Execution doc.

When stress testing, it’s important to remember that too much simply isn’t useful, and only slows down the test. Nor
do we presently have a test infrastructure in place that allows for tests to originate from multiple hosts.

Summary

• You can define multiple execution definitions for the same scenario, so the first might give us the basic perfor-
mance characteristics, the second might be a stress test.

• By default the tests defined in the execution block are run in parallel. This can be changed to by ran sequential
with sequential: true.

• Choose a reasonable number of concurrent users. Typically less than a dozen is enough.

• Choose a reasonable time to hold the test for. Typically 1-2 minutes is enough, and no more than 5 minutes
unless justifiable.

• Remember that we don’t have a performance testing infrastructure in place that can concurrently send requests
to our application from multiple hosts. OpenLMIS performance testing typically only requires the most basic
stress testing.

Testing file uploads

In this short example we’re going to send a request to the catalog items endpoint and upload some items as a CSV file.

upload-catalog-items:
requests:
- include-scenario: get-user-token
- url: ${__P(base-uri)}/api/catalogItems?format=csv

method: POST
label: UploadCatalogItems
headers:

Authorization: Bearer ${access_token}
upload-files:

- param: file
path: /tmp/artifacts/catalog_items.csv

Summary

• When uploading a file we don’t have to worry about setting correct content header as Taurus take care of it on its
own when using upload-files block. This behavior is described in the HTTP Requests of the Taurus user manual
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Pass-fail criteria

With the above tests defined, we can now write pass-fail criteria. This is especially useful if we want our test to fail
when the performance is less than what we’ve defined.

reporting:
- module: passfail

criteria:
- avg-rt of GetUserToken>300ms, continue as failed
- avg-rt of GetServiceToken>300ms, continue as failed

This allows us to fail the test if the average response time for either of the two tests was greater than 300ms. See the
Taurus Passfail doc for more.

Summary

• Write the pass-fail criteria within the test definition.

Performance Acceptance Criteria

With Taurus we can now add basic acceptance criteria when working on new issues. For example the acceptance
criteria might say:

• the endpoint to retrieve 10 users should complete in 500ms for 90% of users

This would lead us to write a performance test for this new GET operation to retrieve 10 users, and we’d add a pass-fail
criteria such as:

reporting:
- module: passfail

criteria:
Get 10 Users is too slow: p90 of Get10Users>500ms, continue as failed

Read the Taurus Passfail doc for more.

Next Steps (WIP)

We’ve covered basic performance testing, stress testing, and pass-fail criteria. Next we’ll be adding:

• Loading performance-oriented data sets (e.g. what happens to these requests when there are 10,000 products).

• Using Selenium to mimic browser interactions, to give us:

– How many http requests does a page incur.

– Network payload size.

• Failing deployments based on performance results.

Performance Data

Performance data in OpenLMIS is meant to be data that helps us answer questions such as:

• What happens to the server and the operations it provides when there are 10,000 orderables, users, facilities,
requisitions, etc?
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• What happens when all that data is being used by many concurrent users?

• What’s the impact on network performance, especially for those in low resource environments?

• What sort of deployment topology works best for typical implementations?

• Does the UI (and possibly other clients) display large sets of data well?

Some basic characteristics of performance data:

• there is a lot of it

• it doesn’t have to look nice or make that much sense to domain experts (e.g. a Vaccine could be randomly gen-
erated to be ordered through the essential meds Program, and that’s okay). Lorem ipsum and random numbers
are just fine here.

• it must be deployable in a deployment topology that is as close to a production setup as possible. After all
it’s for performance testing, and performance testing on a local laptop doesn’t tell us (much) about anything a
production server running in the cloud would experience.

Where is performance data located?

Performance data is stored in Git within each Service that defines it, much like demo-data. In fact in most cases
Performance Data builds off of demo-data, and so a Service should be able to load performance data or demo-data in
very similar ways.

How to load performance data

Like demo-data, performance data is an optional set of data that may be loaded when the Service starts. To do this a
Service should load performance data, likely after any demo-data, by looking for the profiles set in the environment
variable spring.profiles.active. If this environment variable contains the string performance-data,
then the service should load this data before it’s operational for use.

How to create and manage performance data

Performance data is generated with the help of the tool Mockaroo. This tool is used to define schemas which match
the Service’s tables and it may generate large CSVs which are then stored in the Service in git. CSVs are used as
they easily enable the use of foreign key / UUID lookups when a Mockaroo dataset is used (as this Mockaroo dataset
video demonstrates). These CSVs are placed in git for the Service to load the data, however if the Service needs new
performance data, the database schema changes or something else causes the performance data to need to be updated,
the OpenLMIS Mockaroo account should be used to generate a new set, which will then be stored in the Service.

What types of performance data should be created?

Performance data is relatively expensive and tedious to maintain given the questions we’re trying to answer. While it’s
necessary to do so, here are some general guidelines for what to spend time generating, and what not to:

Do

• Generate performance data that will allows performance tests to reflect country data needs.

• Try to generate data that’s more right than random. Random is okay, However if the tool has a sufficiently large
set of facilities, or products, use it.
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• Respect database constraints, foreign keys, references to IDs in other Services etc

• Keep in mind that some UUIDs need to be known. They can’t be generated. You’ll need to know a few of these
key UUIDs (e.g. Program, User, etc) in order to construct useful performance tests.

Don’t

• Overcomplicate the data. 1 billion facilities, a trillion requisitions, 1000 programs just aren’t anywhere near
likely and just take longer to load and more time to maintain. 10k facilities, 100k requisitions, 10 programs are
much more representative.

• Similarly, don’t generate data when demo-data already has enough. E.g. demo data already has a few Programs,
you’re time is better spent setting up one of those programs to have 10k facility type approved products than
you are generating 100 programs.

• Don’t build performance tests off of generated IDs. While Mockaroo makes it easy to build sets of data with
referential integrity, using generated IDs hardcoded in performance tests will result in more brittle tests.

Performance Tips

Testing and Profiling

Knowing where to invest time and resources into optimization is always the first step. This document will briefly cover
the highlights of two tools which help us determine where we should invest our time, and then we’ll dive into specific
strategies for making our performance better.

To see how to test HTTP based services see Performance Testing.

Profiling

After we’ve identified that a HTTP operation is slow, there are two simple tools that can help us in understanding why:

• SLF4J Profiler: useful in printing latency meassurements to our log. It’s cheap and a bit inaccurate, though quite
effective and it works in all production environments.

• VisualVM: perhaps the most well known Java profiling tool can give great information about what the code is
doing, however since it needs to connect directly to the JVM running that Service’s code, it’s better suited for
local development environments rather than debugging production servers.

The usefulness of basic profiling metrics from production environments can’t be understated. Performance issues
rarely occur in local development environments and the people most impacted by slow performance are people using
production systems. Just as our performance tests operate against a Recommended Deployment Topology that tries to
match what most of our customers use, so to is it useful to know how that code is performing in customer implemen-
tations. For these reasons this document will focus more on logging performance metrics with SLF4J Profiler rather
than VisualVM.

Using SLF4J Profiler in Java code is as simple as:

Profiler profiler = new Profiler("GET_ORDERABLES_SEARCH");
profiler.setLogger(XLOGGER); // can be SLF4J Logger or XLogger

profiler.start("CHECK_ADMIN_RIGHT");
rightService.checkAdminRight(ORDERABLES_MANAGE);

profiler.start("ORDERABLE_SERVICE_SEARCH");

(continues on next page)
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(continued from previous page)

Page<Orderable> orderablesPage = orderableService.searchOrderables(queryParams,
→˓pageable);

profiler.start("ORDERABLE_PAGINATION");
Page<OrderableDto> page = Pagination.getPage(OrderableDto.newInstance(

orderablesPage.getContent()),
pageable,
orderablesPage.getTotalElements());

profiler.stop().log();

This will generate log statements that look like the following:

2017-07-24T19:49:45+00:00 e2f424e5b617 [nio-8080-exec-5] DEBUG
org.openlmis.referencedata.web.OrderableController #012+ Profiler
[GET_ORDERABLES_SEARCH]#012|
-- elapsed time [CHECK_ADMIN_RIGHT] 1173.997 milliseconds.#012|
-- elapsed time [ORDERABLE_SERVICE_SEARCH] 199.251 milliseconds.#012|
-- elapsed time [ORDERABLE_PAGINATION] 0.255 milliseconds.#012|
-- Total [GET_ORDERABLES_SEARCH] 1373.511 milliseconds.

Placed in the Controller for this HTTP operation we can tell:

1. Most of the time for this innvocation is spent checking if the user has a right: more than 1 second.

2. Fetching the entities from the database took about 14% of the time

3. Turning them into DTOs used up less than a millisecond.

4. We’d have to look at the Service’s access log to find where additional latency is introduced that we can’t meas-
sure here: serialization, IO overhead, Spring Boot magic, etc

This easily lets us know that improving the performance of the permission check might be well worth the effort.
Since this information is in the logs we can also monitor and graph the performance of the data retrievel latency
(ORDERABLE_SERVICE_SEARCH) in real-time with a well crafted search on our logs.

SLF4J Profile Conventions

• Use the Profiler in Controller methods for code that’s released to production. While in development you can
use a Profiler anywhere you wish, it tends to clutter the code and the logs longer term. A few well placed
Profiler.start() statements, left in the Controller however, can pay dividends longer term when performance
issues need to be diagnosed in implementations.

• Prepend the HTTP operation to the beginning of the name. So GET_ORDERABLES_SEARCH and not ORDER-
ABLES_SEARCH.

• Prefer all upper-case snake_case. e.g. GET_ORDERABLES_SEARCH never getOrderablesSearch.

• Be descriptive and strategic in your Profiler.start() names and locations. E.g. use a new Profiler.start() before a
block/method that does something unlike the code before it: checking permissions, retrieving data, performing
an update, returning a result. Use names that are clear for those who’ll be reading the logs in production systems
years from now.
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Logging

In our service-architecture we have many different components where latency can be introduced and therefore logs we
need to examine when diagnosing where time is being spent:

From the top of the stack down:

1. The Amazon ELB: typically the first place a request arrives, there is usually a very minor bit of latency incurred
here. ELB logging if turned on is typically logged to S3.

2. Nginx reverse-proxy: Nginx is the place for finding HTTP operations. Requests from clients are routed through
Nginx to upstream (aka backend) Services, and from service to service. The Nginx access log is the first place
to see how long it took to process the request and how much time was spent in an upstream service performing
the operation.

3. Service HTTP access log: these (tomcat) access logs are not always prominent however they can be turned on
to give an idea of how much time the Service’s HTTP server spent serving the request as opposed to how much
time was spent transmitting the data. With good network connectivity between Nginx and backend Service
(typically localhost), this is rarely an issue, though it can sometimes uncover hidden issues.

4. Service’s Profiler statements: these logging statements from Java code are treated like all other Java logging
statements and are channeled through our centralised Rsyslog container to be aggregated and written to disk
(and later picked up by log monitoring service - Scalyr).

5. Database: queries take time, transactions can block, etc. Database logs can uncover both the time specific
queries take as well as the actual SQL that’s being run in the database. These logs are typically sourced and
monitored through the RDS service (and Scalyr).

Lets look at an example of a call seen by Nginx and the Profiler.

Service’s Profiler (again):

2017-07-24T19:49:45+00:00 e2f424e5b617 [nio-8080-exec-5] DEBUG
org.openlmis.referencedata.web.OrderableController #012+ Profiler
[GET_ORDERABLES_SEARCH]#012|
-- elapsed time [CHECK_ADMIN_RIGHT] 1173.997 milliseconds.#012|
-- elapsed time [ORDERABLE_SERVICE_SEARCH] 199.251 milliseconds.#012|
-- elapsed time [ORDERABLE_PAGINATION] 0.255 milliseconds.#012|
-- Total [GET_ORDERABLES_SEARCH] 1373.511 milliseconds.

Nginx access log:

10.0.0.238 - - [24/Jul/2017:19:49:45 +0000] "POST /api/orderables/search HTTP/1.1"
→˓200 18455 "-" "Java/1.8.0_92" 1.401 0.000 1.401 1.401 .

Read the Nginx access log format for the details of what these numbers mean. What we can tell comparing these two
is that:

• the total time to the user (just for this operation, not a web-page) was 1.4 seconds.

• All of that time was spent by the Reference Data service (because response time == upstream time).

• There is 28ms of latency not accounted for in our Profiler. It could be time spent in serialization of Java objects,
Spring Boot overhead, tomcat overhead, network overhead (e.g. we were suffering from a 200ms delay due to a
TCP configuration being off previously).

• Our user must be on a fast network connection, as Nginx spent the same time serving the response as it did
getting the results from the upstream server. (a bit oversimplified).

• Approx 18.5KB was returned in this Orderables Search.
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RESTful representations and the JPA to avoid

Avoid loading entities unnecessarily

Don’t load an entity object if you don’t have to; use Spring Data JPA exists() instead. A good example of this is
in the RightService for Reference Data. The checkAdminRight() checks for a user when it receives a user-based
client token. If the user is checking their own information, they only need to verify the existence of the user, instead of
getting the full User info (using findOne()). Spring Data JPA’s CrudRepository supports this through the method
exists().

In Spring Data JPA 1.11’s (shipped in Spring Boot 1.5+) CrudRepository ships with exists() support for more
than just the primary key column using Projections.

For example, take this bit of code that was found when searching for Orderables by a Program’s code:

// find program if given
Program program = null;
if (programCode != null) {

program = programRepository.findByCode(Code.code(programCode));
if (program == null) {
throw new ValidationMessageException(ProgramMessageKeys.ERROR_NOT_FOUND);

}
}

This requires a trip to the database, which will need to pull the entire Program entity, back to the Service which will
then turn it into a Java object. . . which will finally do what we actually wanted and check if the Program is null. Using
an exists check, we can write code such as:

// find program if given
Code workingProgramCode = Code.code(programCode);
if ( false == workingProgramCode.isBlank()

&& false == programRepository.existsByCode(workingProgramCode) ) {
throw new ValidationMessageException(ProgramMessageKeys.ERROR_NOT_FOUND);

}

The important part here is the use of the repositories existsByCode(...), which is a Spring Data projection.
This will avoid pulling the row, avoid turning a row into a Java object, and in general can save upwards of 100ms as
well as the extra memory overhead. If the column is indexed (and well indexed), the database may even avoid a trip to
disk, which typically can bring this check in under a millisecond.

Use Database Paging

Database paging is vastly more performant and efficient than Java paging or not paging at all. How much more?
Before the Orderable’s search resource was paged in the database, it was paged in Java. In Java pulling a page of only
10 Orderables out of a set of 10k Orderables took around 20 seconds. After switching to database paging, this same
operation took only 2 seconds (10x more performant) and of that 95% of those 2 seconds are spent in an unrelated
permission check.

The database paging pattern was established and as of this writing is not well enough adopted. Remember when
paging to:

1. Follow the pagination API conventions.

2. Use Spring Data Pageable all the way to the query.

3. Spring Data projection makes this easy (more so in 1.11+). So code like this just works:
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@Query("SELECT o FROM Orderable o WHERE o.id in ?1")
Page<Orderable> findAllById(Iterable<UUID> ids, Pageable pageable);

4. If it’s an EntityManager.createQuery(), you’ll need to run 2 queries: one for a count() and one for
the (sub) list.

5. If you’re a client, use the query parameters to page the results - otherwise our convention will be to return the
largest page we can to you, which is slower.

Follow the pattern in Orderable search.

Eager Fetching & Lazy Loading

Eager fetching and lazy loading refer to the loading strategy an ORM takes when loading related Entities to the one
that you’re interested in. When done right, eager fetching can eliminate the N+1 problem in the next section. When
done wrong, your service can consume all it’s available memory and stall out.

Most often eager loading is not the right strategy to choose, and while Hibernate’s default is to always use lazy loading,
we should remember that Hibernate uses the JPA recommendation to lazily load all *ToMany relationships and eagerly
fetch *ToOne relationships.

Eagerly fetching *ToOne relationships is not wrong, however we can’t talk about eager fetching and lazy loading
without analyzing what the typical uses of retrieving data/entities is. For that we’ll look at the N+1 problem.

N+1 loading

In the simplest terms, N+1 loading occurs when an entity is loaded, related entities are marked as lazily loaded,
and then the Java code (service, controller, etc) navigates to the related entity causing the JPA implementation to go
load that related entity, which typically is an IO event back to the database. This is especially egregious when the
related entity is actually some sort of collection (*ToMany relationship). For each element that’s navigated to in the
relationship, often another IO call occurs back to the database.

Avoiding N+1 loading is best done through designing for the common case. Take for example a User entity, which
has a lazily loaded OneToMany relationship with RoleAssignments. We might think that the common case we should
design for is updating a user and their RoleAssignments. If we design for this we’ll likely place the full RollAssignment
resource in the representation for GET and PUT of a User. Since the relation is lazily loaded we’ll incur N+1 loads: 1
for the User and N for the # of RoleAssignments. If we changed the relation to be eagerly fetched, then we’d pull all
N RollAssignments when any bit of Java code loaded the User - even if we just needed the User’s ID or name.

The simplest solution therefore is to use a lazily loaded relation, and remove the full representations of RoleAssign-
ments from the User resource. After all, updating a User is actually pretty uncommon compared to retrieving a User,
or even retriving the User with RoleAssignments to check that user’s rights. If we do actually need a User’s RoleAs-
signments, we don’t actually want to retrieve them with the User, rather we’ll likely want a specific sub Resource of a
User for managing their RoleAssignments. This sub-resource would typically look like:

• /api/users/{id}

• /api/users/{id}/roleAssignments

This would optimize the common case (just load a User to get their name/profile), and provide a seperate resource
which could be optimized for pulling that User’s RoleAssigments in one trip to the database.
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Summary

• Build RESTful resource representations that are shallow: that is don’t load more than just the single entity being
asked for.

• No FETCH JOINS

• Don’t use eager fetching unless it’s really safe to do so. It might seem to solve the above problem, but it can go
awry quickly. Just use lazy loading.

• During development you can set environment variables to show what SQL is actually being run by Hibernate.

Database JOINs are expensive

Simply put a database join is expensive. While our Services should not denormalize to avoid many joins, we should
consider the advice in the FlattenComplexStructures section, especially when such a representation is used frequently
by other clients.

Indexes

When done right an index can prevent the database from ever having to go to disk - a slow operation. Done wrong and
a plethora of indexes can eat up memory and not prevent disk operations.

Some tips (PostgreSQL):

• The primary key is indexed. When you know what you want, using it’s primary key, a UUID, is usually the most
effecient.

• Foreign keys are not automatically indexed in PostgreSQL, however they almost always should be.

• You almost always want a B-tree index (the default).

• Unique columns are some of the best indicies, when it’s not a unique column, keep in mind that low cardinality
indexes negatively impact performance

• Don’t over-index, each index takes up memory. Choose them based on the common search (i.e. WHERE clause)
and prefer to search based on high-cardinality columns with indexes.

• More indexing tips

Flatten complex structures

We should take complex structures that do not change often, flattening and storing them in the database. This would
create a higher expense in writes, but improve performance in reads. Since reads would be more common than writes,
the trade-off is beneficial overall.

A good example here are the concept of permission strings. The role-based access control (RBAC) for users is
complex, with users being assigned to roles potentially by program, facility, both, or neither. However, all of the
rights that a user has can be represented by a set of permission strings, with complexity represented in different string
formats. Formats as follows:

• RightName - for general rights

• RightName|FacilityUUID - for fulfillment rights

• RightName|FacilityUUID|ProgramUUID - for supervision rights
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The different parts of the permission are in different parts of the string, and each part is delimited with a delimiter
(pipe symbol in this case).

These strings, or each part of these strings, are saved as rows in a separate table and retrieved directly. This dramatically
improves read performance, since we avoid retrieving the complex RBAC hierarchy and manipulating it in the Java
code.

See https://groups.google.com/d/msg/openlmis-dev/wKqgpJ2RgBA/uppxJGJiAwAJ for further discussion about per-
mission strings.

HTTP Cache

E-tag and if-none-match

HTTP Caching in a nut-shell is supporting the use of fields in an HTTP header that can help identify if a previous
result is no longer valid. This can be very useful for the typical OpenLMIS user that is often in an environment with
low network bandwidth.

In our Spring services this can be as simple as:

@RequestMapping(value = "/someResource", method = RequestMapping.GET)
public ResponseEntity<SomeEntity> getSomeResource(@PathVariable("id") UUID
→˓resourceId) {
...
// do work
...

return ResponseEntity
.ok()
.eTag(Integer.toString(someResource.hashCode()))
.body(someResource);

}

The key points here are:

• someResource must accurately implement hashCode().

• The Object’s hashCode is returned to the HTTP client (browser) in the :code‘etag‘ header.

• On subsequent calls the HTTP client should include the HTTP header if-none-match with the previously returned
etag value. If the etag value is the same, a HTTP 304 is returned, without a body, saving network bandwidth.

This simple implementation won’t however save the server from processing the request and generating the etag from
the Object’s hashCode(). If this server operation is particularly expensive, further optimization should be done in the
controller to use a field other than the hashCode() and to return early:

@RequestMapping(value = "/someResource", method = RequestMapping.GET)
public ResponseEntity<SomeEntity> getSomeResource(

@RequestHeader(value="if-none-match") String ifNoneMatch,
@PathVariable("id") UUID resourceId) {

if (false == StringUtils.isBlank(ifNoneMatch)) {
long versionEtag = NumberUtils.toLong(ifNoneMatch, -1);
if (someResourceRepo.existsByIdAndVersion(resourceId, versionEtag)) {

return ResourceEntity
.ok()
.etag(ifNoneMatch);

}

(continues on next page)
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(continued from previous page)

}

...
// do work
...

return ResponseEntity
.ok()
.eTag(Integer.toString(someResource.getVersion())
.body(someResource);

}

The key to the above is using a property of an entity that changes every time the object changes, such as one marked
with @Version, to use as the resource’s etag. By storing the basis of the etag in the database, we can run a query
which simply goes and sees if that entity still has that version, and if it does we can return a HTTP 304. The property
used here could be anything, so long as we can search for it in a way that saves processing time (hint: a good choice
with high-cardinality would be a multi-column index on the id and the version). Another good choice could be a
LastModifiedDate.

Cache-control

WIP:

• no-cache

• private

• max-age

Performance

The OpenLMIS-UI is a large application that will be running in a web browser with less RAM and processing power
than your computer. This is a fair statement, because if you are reading this, you are probably a developer.

This set of conventions is about detecting, diagnosing, and fixing common performance issues that have been a problem
in the OpenLMIS-UI.

Blocking the DOM

Use asynchronus Javascript (promises) so you don’t block the thread. This will cause web browers to think the
OpenLMIS-UI is crashing, and it will try to close the browser tab.

Memory Leaks

This one is a bit tricky. It’s fairly hard to create a memory leak in AngularJS unless you’re mixing it with other external
libraries that are not based on AngularJS(especially jQuery). Still, there are some things you need to remember while
working with it, this article provides some general insight on how to find, fix and avoid memory leaks, for more
detailed info I would suggest reading this article(it’s awesome!).
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Finding memory leaks

I won’t lie, finding out if your application has some memory leaks is annoying, and localizing those leaks is even more
annoying and can take a lot of time. Google Chrome devtools is incredible tool for doing this. All you need to do is:

1. open you application

2. go to the section you want to check for memory leaks

3. execute the workflow you want to check for memory leaks so any service or cached data won’t be shown on the
heap snapshot

4. open devtools

5. go to the Profiles tab

6. select Take Heap Snapshot

7. take a snapshot

8. execute the workflow

9. take a snapshot again

10. go to a different state

11. take a snapshot again

12. select the last snapshot

13. now click on the All objects select and choose Objects allocated between Snapshot 1 and Snapshot 2

This will show you the list of all objects, elements and so on, that were created during the workflow and are still
residing in the memory. That was the easy part. Now we need to analyze the data we have and this might be quite
tricky. We can click on object to see what dependency is retaining them. There is some color coding here that can be
useful to you - red for detached elements and yellow for actual code references which you can inspect and see. It takes
some time and experience to understand what’s going here but it gets easier and easier as you go.

Anti-patterns

Here are some anti-pattern that you should avoid and how to fix them.

Event handlers using scope

Let’s look at the following example. We have a simple directive that binds an on click action to the element.

(function() {

'use strict';

angular
.module('some-module')
.directive('someDirective', someDirective);

function someDirective() {
var directive = {

link: link
};
return directive;

(continues on next page)
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(continued from previous page)

function link(scope, element) {

element.on('click', onClick);

function onClick() {
scope.someFlag = true;

}
}

}

})();

The problem with this link function is that we’ve created a closure with context which retains the context, the scope
and “then basically everything in the universe” until we unregister the handler from the element. That’s right, even
after the element is removed from the DOM it will still reside in the memory retained by the closure unless unregister
the handler. To do this we need to add a handler for ‘$destroy’ event to the scope object and then unregister the handler
from the element. Here’s an example how to do it.

(function() {

'use strict';

angular
.module('some-module')
.directive('someDirective', someDirective);

function someDirective() {
var directive = {

link: link
};
return directive;

function link(scope, element) {

element.on('click', onClick);

scope.$on('$destroy', function() {

//this will unregister the this single handler
element.off('click', onClick);

//this will unregister all the handlers
element.off();

});

function onClick() {
scope.someFlag = true;

}
}

}

})();
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Improper use of the $rootScope.$watch method

$rootScope.$watch can be a powerful tool, but it also requires some experience to use right. It allows the developers
to create watchers that live through the whole application life and are only removed when they are explicitly said to
unregister or when the application is closed, which may result in a huge memory leaks. Here are some tips on how to
use them.

• Use $scope.$watch when possible! If you’re using a watcher in a directive, it will have access to the scope
object, add the watcher to it! This way we take advantage of AngularJS automatic watcher unregistration when
the scope is deleted.

• Avoid using $rootScope.$watch in factories. Don’t use it in factories unless you’re completely sure what you’re
doing. Remember to unregister it when it is no longer needed! This takes us to the next bullet point.

• Use them in Services. Watching for current locale can be great example of that. We’re using it with service,
which is a singleton - it is only created once during application lifetime - and we want to watch for the current
locale all the time we rather won’t want to stop at any point.

• Unregister it if it is no longer needed. If you’re sure you won’t be needing that watcher any longer simply
unregister it! Here’s an example

var unregisterWatcher = $rootScope.$watch('someVariable', someMethod);
unregisterWatcher();

Using callback functions

Using callback isn’t the safest idea either as it can cause some function retention. AngularJS gives us awesome tool to
bypass that - promises. They basically gives us the same behavior and are retention-risk free!

1.6 Deployment

Deployment is done currently through Docker and Docker Compose. A living example of deployment scripts and
documentation that the OpenLMIS product uses to deploy demo and CD environments is available in the openlmis-
deployment repository. Documentation from that repository is listed below:

1.6.1 Recommended Deployment Topology

OpenLMIS uses and therefore recommends that most deployments utilize Amazon Web Services (AWS). However
OpenLMIS is in no way tied to only being deployed on AWS.

The basic ingredients of an OpenLMIS deployment are:

• a domain name to reach the installation at (e.g. test.openlmis.org)

• a SSL certificate to make the communication to OpenLMIS secure over the web

• a computer/instance/etc that can run Docker Machine (as well as Compose, etc) with enough bandwidth, pro-
cessing power, memory and storage to run many (6+) Services and associated utilities

• a computer/instance/etc that can run PostgreSQL for those Services

• credentials with an SMTP server to send emails

In AWS (a region close to your users) this would be:
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• A DNS provider for your domain name (e.g. test.openlmis.org). This could be Route 53, however currently
OpenLMIS deployments do not utilize this service.

• A SSL certificate from AWS Certificate Manager

• A ELB that can route to/from the OpenLMIS instance and serve the ACM SSL certificate (this becomes more
useful when running out of Elastic IPs)

• an EC2 Instance (m4.large - 2vCPU, 8GiB memory, 30GB EBS store)

• an RDS Instance (db.t2 class instances are used below because most OpenLMIS deployments have long periods
of inactivity where the t2 class’ credits are able to accumulate. Choose another class if your deployment will be
actively used for more than half the day):

– For local development, QA, and small private demos: use Ref Distro’s included database or a db.t2.micro
(though you’ll need to increase the max_connections parameter to >150)

– For CD, public demos, UAT, and small production: db.t2.medium

– For medium and larger production instances: db.t2.large and up based on need:

* When reports are frequently run

* When the number of Products (full and non-full supply) > 500

* When the number of Requisitions (historical and planned for next 2 processing periods) > 100,000

• a VPC for your EC2 and RDS instances, with appropriate security group - SSH, HTTP, HTTPs, Postgres (limit
source to Security Group) at minimum.

• Amazon SES with either the domain (w/DKIM) verified or a specific from-address

For more information on setting this up, see the Provisioning section and also follow the link for backing up/restoring
RDS. For more information on how to configure your RDS please visit RDS configuration page.

1.6.2 How to provision a single Docker host in AWS

If case the deployment target is one single host, then swarm is not needed.

In that case, refer to Provision-swarm-With-Elastic-ip.md for step 1, 2, 3, 5. Omit step 4, that should be sufficient to
provision a single host deployment environment.

Note: choose ubuntu instead of amazon linux distribution. Even though this single host won’t be running a swarm,
ubuntu is still preferred over amazon linux distribution. Because docker-machine does not support provisioning ama-
zon linux distribution. However, you can manually provision the single host, but then making that host remotely
accessible would be tricky and involves a lot of manual steps.

Database

If deploying OpenLMIS with the included Docker Container for Postgres, then no further steps are needed. However
this setup is recommended only for development / testing environments and not recommended for production installs.

Test and UAT environments in this repository demonstrate that Postgres could be installed outside of Docker and
OpenLMIS services may be pointed to that Postgres server. Test and UAT both use Amazon’s RDS service to help
manage production-grade database services such as automated patch release updates, rolling backups, snapshots, etc.

Some notes on provisioning an RDS instance for OpenLMIS:

• Test and UAT are both capable of running on economical RDS instances: db.t2.micro
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• When choosing a small RDS instance, the max number of connections are set based on an ideal number from
RDS. OpenLMIS services tend toward using about 10 DB connections per service. Therefore Tests and UAT
instances use a Parameter Group named Max Connections that increase this limit to 100. Larger, more expensive,
instances likely won’t have this limitation.

• RDS instances are in a private VPC and in the same availability zone as their EC2 instance and it’s ELB.
The security group used should be the same as used for the EC2 instance, though it should limit incoming
PostgreSQL connections to only those from the security group.

• Don’t forget to update the .env file used to deploy OpenLMIS with the correct Host, username and password
settings.

1.6.3 How to provision a docker swarm for deployment in AWS (With ELB)

1. Network setup

Create a VPC for the new swarm cluster.

In it, there should be 2 subnets created(which is needed by AWS ELB later).

Ensure the subnets will assign public ip to EC2 instances automatically, so it’s easier to ssh into them later.

2. Create EC2 instances

This step is similar to creating EC2 instances for any other type of purpose.

When creating those instances, make sure to select the VPC created in the previous step.

Mentally mark one of the instances as swarm manager, the rest of them will be regular nodes.

Note: choose ubuntu instead of amazon linux distribution. The amazon linux distribution has problems with docker
1.12, the version that has built in support for docker swarm. 1.12 is not available in amazon linux RPM yet. And it
also lacks support for aufs, which is recommended by docker.

Make sure to open port 2376 insecurity group, this is the default port that docker-machine uses to provision.

3. Add ssh public key to the newly created EC2 instances

In order to access the EC2 instances, the public key of the machine from which the provisioning will happen need
to be added to the target machine.

This is done by ssh into the EC2 instances, and then edit [User Home Dir]/.ssh/authorized_keys file to
add your public key into it.

This will be needed by the docker-machine create command later.

4. Create ELB

The reason to create ELB is that AWS has a limit on how many elastic ips each account could have, the default is 5,
which could be easily used up.

So in order for the swarm to be available via a constant address, an ELB is created to provide that constant url.

This is also why in the first step, there need to be 2 subnets, it’s required by ELB.

When creating the ELB, make sure TCP port 22 and 2376 are forwarded to the target EC2 instance. 22 is for ssh,
2376 is for docker remote communication. And also, make sure to choose classic ELB instead of the new one. The
classic one allows TCP forwarding, the new one only supports http and https.
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5. Enable health check

ELB only forwards to a target machine if the target is considered “healthy”. And ELB determines the health of a target
by pinging it.

So, in the EC2 instance chosen as the swarm manager, start apache2 service at port 80(or any other port you may
prefer). Then in ELB settings, set it to ping that port.

For OpenLMIS the Nginx container starts itself automatically after the system is rebooted, so this ensures that ELB
will start forwarding immediately if the instance reboots.

6. Provision all EC2 instances

Use this command:

docker-machine create --driver generic --generic-ip-address=[ELB Url]
--generic-ssh-key ~/.ssh/id_rsa --generic-ssh-user ubuntu name1

to provision the swarm manager.

Note: the –driver flag has support for AWS. But the intention to explicitly not use it is to make sure this provision step
could apply to other host environments as well, not just AWS hosted machines.

The –generic-ip-address flag needs to be followed by the ip of ec2 instance(for the swarm manager, it should be the
ELB Url).

The –generic-ssh-key flag needs to be followed private key, whose public key pair should have already been added in
step 2.

The –generic-ssh-user flag needs to be followed by the user name, in the case of Ubuntu EC2 instances, the default
user name is ubuntu.

Lastly, supply a name for the docker machine.

Do this for all the EC2 instances, to make sure docker is installed on all of them. (When doing this for the none
manager nodes, the –generic-ip-address flag should be followed by their public ip that was automatically assigned,
since ELB only forwards traffic to the manager node.)

7. Start swarm

Choose one of the EC2 instances as the swarm manager by:

eval $(docker-machine env [name of the chosen one]) (the name in the [] should be one of the
names used in the previous step)

Now your local docker command is pointing at the remote docker daemon, run:

docker swarm init

Then follow its console output to join the rest of the EC2 instances into the swarm. (it could be done by switching
docker-machine env, or by using the -H flag of docker, the former is easier)

Since all the swarm node are in the same VPC, they can talk to each other by private ips which are static inside the
VPC. The swarm will regroup it self and maintain the manager-regular node structure even after EC2 instances
are rebooted.
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8. Allow Jenkins to access swarm manager

In order for Jenkins to continuously deploy to the swarm, it needs access to the swarm manager.

In step 3, when the swarm manager EC2 instance was being provisioned. The docker-machine created some certificate
files behind the scene.

Those files should be in the machine that the provision command was issued(not the machine that was being provi-
sioned), under:

[User Home Dir]/.docker/machine/machines/[name of the swarm manager]

Those files need to be copied to jenkins.

In a Jenkins deployment job, at the start of its build script, add:

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://[ELB Url that forwards to Swarm manager]"

export DOCKER_CERT_PATH="[path to the dir that contains certs]"

This will make following docker commands use the remote daemon, not the local one.

Now, Jenkins should be able to access and deploy to the swarm.

Node: Jenkins would only need access to the swarm manager, the other nodes are managed by the swarm manager.
Jenkins does not need direct access to them.

1.6.4 How to provision a docker swarm for deployment in AWS (With Elastic IP)

1. Create EC2 instances

This step is similar to creating EC2 instances for any other type of purpose.

Mentally mark one of the instances as swarm manager, the rest of them will be regular nodes. Assign an elastic ip to
the manager node.

Note: choose ubuntu instead of amazon linux distribution. The amazon linux distribution has problems with docker
1.12, the version that has built in support for docker swarm. 1.12 is not available in amazon linux RPM yet. And it
also lacks support for aufs, which is recommended by docker.

Make sure to open port 2376, this is the default port that docker-machine uses to provision. And make sure
they have auto assigned public ip(not elastic ip) so you can ssh into them.

2. Add ssh public key to the newly created EC2 instances

In order to access the EC2 instances, the public key of the machine from which the provisioning will happen need
to be added to the target machine.

This is by ssh into the EC2 instances, and then edit [User Home Dir]/.ssh/authorized_keys file to add
your public key into it.

3. Provision all EC2 instances

With this command:

docker-machine create --driver generic --generic-ip-address=*.*.*.*
--generic-ssh-key ~/.ssh/id_rsa --generic-ssh-user ubuntu name1
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Note: the –driver flag has support for AWS. But the intention to explicitly not use it is to make sure this provision
guide could apply to any host machine, not just AWS hosted machines.

The –generic-ip-address flag needs to be followed by the ip of ec2 instance. For the manager node, use the elastic ip,
for the others, use the temp ips assigned by aws.

The –generic-ssh-key flag needs to be followed private key, whose public key pair should have already been added in
step 2.

The –generic-ssh-user flag needs to be followed by the user name, in the case of Ubuntu EC2 instances, the default
user name is ubuntu.

Lately, supply a name for the docker machine.

Do this for all the EC2 instances, to make sure docker is installed on all of them.

4. Start swarm

Choose one of the EC2 instances as the swarm manager by:

eval $(docker-machine env [name of the chosen one]) (the name in the [] should be one of the
names used in the previous step)

Now your local docker command is pointing at the remote docker daemon, run:

docker swarm init

Then follow its console output to join the rest of the EC2 instances into the swarm. (it could be done by switching
docker-machine env, or by using the -H flag of docker, the former is easier)

5. Allow Jenkins to access swarm manager

In order for Jenkins to continuously deploy to the swarm, it needs access to the swarm manager.

In step 3, when the swarm manager EC2 instance was being provisioned. The docker-machine created some certificate
files behind the scene.

Those files should be in the machine that the provision command was issued(not the machine that was being provi-
sioned), under:

[User Home Dir]/.docker/machine/machines/[name of the swarm manager]

Those files need to be copied to jenkins(if the provision was done on Jenkins, then there is no need to copy).

In a Jenkins deployment job, at the start of its build script, add:

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://[ip of the swarm manager]"

export DOCKER_CERT_PATH="[path to the dir that contains certs]"

This will make following docker commands use the remote daemon, not the local one.

Now, Jenkins should be able to access and deploy to the swarm.

Node: Jenkins would only need access to the swarm manager, the other nodes are managed by the swarm manager.
Jenkins does not need direct access to them.

1.6.5 Deployment Environments

Scripts in this directory are meant to be ran in Jenkins.
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Overview

• shared/ contains scripts for the Jenkins job(s):

– init_env.sh is run in Jenkins to copy the docker environment files (has secure credentials) from
JENKINS_HOME/credentials/ to the current job’s workspace

– pull_images.sh always pulls/refreshes the infrastructure images (e.g. db, logs, etc), and then at the
end will pull the image for the service that the Jenkins job is attempting to deploy (e.g. requistion, auth,
referencedata, etc).

– restart.sh is paramartized by Jenkins to either keep or wipe volumes (e.g. database and logging
volumes). When run this brings the deployed reference distribution down, and then back up. After it’s
brought up, the nginx.tmpl file is copied directly into the running nginx container just started.

– nginx.tmpl is the override of the nginx template for docker and proxying - this is a copy from openlmis-
ref-distro. See restart.sh for how it’s used.

• test_env has a compose file which is the Reference distribution, and a script for Jenkins to kick everything
off.

• uat_env has a compose file which is the Reference distribution, and a script for Jenkins to kick everything off.

• demo_env has a compose file which is the latest stable version of the Reference distrubution, and a script for
Jenkins to kick everything off.

Local Usage

These scripts won’t work out of the box in a dev’s local machine, to make them work, you need a few files that are
present in Jenkins but not in your local clone of this repo:

1. The .env file

This file is present in Jenkins. It is copied to the workspace of a deployment job(either Jenkins slave or master)
every time that job is ran.

This file is not included in this repo because the db credentials could be different for different deployment
environments. The default .env file that is used during development and CI is open in github, making it not
suitable for deployment purposes.

2. The cert files for remotely controlling docker daemon deployment target

These files should not be included in this public repo for obvious reasons.

Similar to the .env file, they are also present in Jenkins and copied to a deployment job’s workspace(either
Jenkins slave or master) every time it is ran.

To get these files, you need to be able to ssh to the Jenkin’s host instance.

It’s not recommended that you connect to the remote deployment environments, however if you have to:

1. pull the remote cert files to a local directory. They are currently located under JENKINS_HOME/
credentials/ in the Host directories. JENKINS_HOME would currently be /var/lib/jenkins.

2. With the above cert files, you could control the remote docker machine by copying the certs to a local certs/
directory, and then running the following in your shell:

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://<path-to-elb-of-docker-host>:2376"
export DOCKER_CERT_PATH="${PWD}/certs"

106 Chapter 1. Contents:

http://github.com/openlmis/openlmis-ref-distro
http://github.com/openlmis/openlmis-ref-distro


OpenLMIS Documentation, Release 3.0

e.g. a current elb path for test is elb-test-env-swarm-683069932.us-east-1.elb.amazonaws.com

After this, running docker commands in your shell will be ran against the remote machine. e.g. docker inspect, logs,
etc

How to backup persisted data?

if using ref distro’s included db container

1. ssh into the docker host that you want, either test env or UAT env. Or use the technique above to connect your
docker client to the remote host as needed

2. run this command

docker exec -t [PostgresContainerName] /usr/lib/postgresql/9.4/bin/
pg_dumpall -c -U [DBUserName] > [DumpFileName].sql

PostgresContainerName is usually testenv_db_1 or uatenv_db1, you can use docker ps to find out.
DBUserName is the one that was specified in the .env file, it’s usually just “postgres”. DumpFileName is
the file name where you want the back up to be stored in the host machine.

using Amazon’s RDS

RDS provides a number of desirable features that are more ideal for production environments, including auto-
mated backups. To backup and restore the OpenLMIS database when using RDS, follow Amazon’s documentation:
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_CommonTasks.BackupRestore.html

1.6.6 RDS configuration

This guide assumes a clean RDS instance has just been created.

1. Setting up PostGIS for RDS

PostGIS is used by some OpenLMIS services to provide better geographical support. Amazon provides a great
guide on how to do it under this link. Make sure to execute those instructions in the database containing
OpenLMIS schemas, rather than postgres.

2. Adding UUID extension on RDS. Some services require the uuid-ossp extension in order to randomly generate
UUIDs in SQL. In order to ensure OpenLMIS works properly with RDS, you need to run the following command
to install the extension:

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

1.7 Versioning and Releasing

1.7.1 Micro-Services are Versioned Independently

OpenLMIS version 3 introduced a micro-services architecture where each component is versioned and released inde-
pendently. In addition, all the components are packaged together into a Reference Distribution. When we refer to
OpenLMIS 3.X.Y, we are talking about a release of the Reference Distribution, called the ref-distro in GitHub. The
components inside ref-distro 3.X.Y have their own separate version numbers which are listed on the Release Notes.
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The components are each semantically versioned, while the ref-distro has “milestone” releases that are conducted
roughly quarterly (every 3 months we release 3.2, 3.3, etc). Each ref-distro release includes specific versions of the
other components, both service components and UI components.

Where We Publish Releases

All OpenLMIS source code is available on GitHub, and the components have separate repositories. Releases are tagged
on GitHub for all components as well as the ref-distro. Releases of some components, such as the service components
and UI components, are also published to Docker Hub as versioned docker images. In addition, we publish releases of
the service utility library to Maven.

1.7.2 Release Process

Starting with OpenLMIS 3.2.1, each release of the Reference Distribution will go through a Release Candidate process.
A Release Candidate will be shared for a Review Period of at least one week to allow for manual regression testing
and to allow community review and input. The goal is that we catch and fix issues in order to put out higher-quality
releases.

The following diagram illustrates the process, and each step is explained in detail below.

Active Development

• Multiple agile teams develop OpenLMIS services/components and review and incorporate Pull Request contri-
butions

• Microservices architecture provides separation between the numerous components

• Automated test coverage prevents regressions and gives the team the safety net to release often

• Continuous Integration and Deployment (CI/CD) ensures developers get immediate feedback and QA activities
can catch issues quickly

• Code is peer reviewed during Jira ticket workflow and in Pull Requests

• Documentation, CHANGELOGs and demo data are kept up-to-date as code development happens in each ser-
vice/component

Do Release Preparation & Code Freeze

• Verify the pre-requisites, including all automated tests are passing and all CHANGELOGs are up-to-date; see
Release Prerequisites below under Rolling a Release

108 Chapter 1. Contents:

http://semver.org/
https://hub.docker.com/u/openlmis/
https://github.com/OpenLMIS/openlmis-service-util


OpenLMIS Documentation, Release 3.0

• Conduct a manual regression test cycle 1-2 weeks before the release, if possible

• Begin a Code Freeze: shift agile teams’ workloads to bugs and clean-up, rather than committing large new
features or breaking changes (“slow down” 1-2 weeks before release)

Note: Branching is not part of the current process (see ‘We Prefer Coordination over Branching’ section below),
but may be adopted in the future along with CI/CD changes to support more teams working in parallel.

• Write draft Release Notes including sections on ‘Compatibility’, ‘Changes to Existing Functionality’, and ‘New
Features’

• Schedule or timing for releases is documented above and may be discussed and revised by the community

Publish a Release Candidate

• Each component that has any changes since the last release is released and semantically versioned (e.g.,
openlmis-requisition:6.3.4 or openlmis-newthing:1.0.0-beta)

Note: Usually, all components are released with the Reference Distribution. Sometimes, due to exceptional
requests, the team may release a service/component at another time even when there is not another Reference
Distribution release.

• Reference Distribution Release Candidate is released with these components (e.g., openlmis-ref-distro:3.7.0-
rc1)

Note: We archive permanent documentation for every release, but not for every release candidate.

• Share Release Candidate with the OpenLMIS community along with the draft Release Notes and invite testing
and feedback

See the ‘Rolling a Release’ section further below for the specific technical steps to build, tag and publish a release of
components and the Reference Distribution.

Review Period

The overall timeline for review period starts when the first Release Candidate is shared and should last at least 1 week,
during which time subsequent Release Candidates may be published.

• The community is alerted of the upcoming release candidate date and review period via Slack and the listservs.

• Active Development is paused and the only development work that happens is release-critical bug fixes or work
on branches (note: branches are not yet recommended and not supported by CI/CD).

• The team conducts a full manual regression test cycle (including having developers conduct testing) according
to the Release Candidate Test Plan. For an example, see the 3.2.1 Regression Test Plan. The test plan is included
in the final Release Notes.

• Community members are requested to conduct user acceptance testing to submit bugs and issues with the release
candidate. Members can review and leverage the OpenLMIS manual test cases.

• OpenLMIS will run automated performance testing and review results.

• Manual bug reports are submitted in Jira, see the Reporting bugs section for details on how to submit bugs to
OpenLMIS. All bugs and issues related to the Release Candidate must be associated with the specific Release
Candidate Bugs epic. Bugs can be identified in the code, documentation, and translations.

• A triage team will review and triage all bugs submitted on a daily bases during the review period.
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Fix Critical Issues

Are there critical bugs or issues associated with the release candidate? If not, after the first Release Candidate (RC1)
OpenLMIS may move directly to a release. Otherwise, OpenLMIS will fix critical issues and publish a new Release
Candidate (e.g. RC2).

• Developers fix critical issues in code, documentation, and translations. Only commits for critical issues will be
accepted. Other commits will be rejected.

• Every commit is reviewed to determine whether portions or all of the full regression test cycle must be repeated

• And we continue to hold every ticket up to our on-going guidelines and expectations:

– Every commit is peer reviewed and manually tested, and should include automated test coverage to meet
guidelines

– Every commit must correspond to a Jira ticket and have gone through review and QA steps, and have
Zephyr test cases in Jira

Once critical issues are fixed, publish a new Release Candidate and conduct another Review Period.

Publish the Release

When a Release Candidate has gone through a Review Period without any critical issues found, then this release
candidate becomes the Golden Master to be published as an official release of OpenLMIS.

• Update the Release Notes to state that this is the official release and include the date

• Release the Reference Distribution; the exact code and components in the Golden Master Release Candidate
are tagged as the OpenLMIS Reference Distribution release with a version number tag (e.g. openlmis-ref-
distro:3.7.0)

• Share the Release with the OpenLMIS community along with the final Release Notes

After publishing the release, Active Development can resume.

Releasing components outside of a Ref Distro release (draft)

At times OpenLMIS will release stable components outside the process of releasing a new Ref Distro. When a
component is released without the Ref Distro it is done on its own - without the benefits of the rigirous release process
of the Ref Distro.

Any component may be released at any time. However to release a component, it must pass the following criteria:

• All automated tests of the component must be passing.

• All dependancies must also be co-released and their automated tests passing if a change in the dependancy is
needed to successfully release the component.

• The release must be stable - no half-finished features or fixes.

• Since the release of the component is outside of the Ref Distro release process, implementers should be careful
in taking such releases as they haven’t been fully tested in the larger context of the Ref Distro.

Implementation Release Process

A typical OpenLMIS implementation is composed of multiple core OpenLMIS components plus some custom compo-
nents or extensions, translations and integrations. It is recommended that OpenLMIS implementations follow a similar
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process as above to receive, review and verify that updates of OpenLMIS perform correctly with their customizations
and configuration.

Key differences for implementation releases:

• Upstream Components: Implementations treat the OpenLMIS core product as an “upstream” vendor distribu-
tion. When a new core Release Candidate or Release are available, they are encouraged to pull the new upstream
OpenLMIS components into the implementations CI/CD pipeline and conduct testing and review.

• Independent Review: It is critical for the implementation to conduct its own Review Period. It may be a process
similar to the diagram above, with multiple Release Candidates for that implementation and with rounds of
manual regression testing to ensure that all the components (core + custom) work together correctly.

• Conduct Testing/UAT on Staging: Implementations should apply Release Candidates and Releases onto test-
ing/staging environments before production environments. Testing should be conducted on an environment
that is a mirror of production (with a recent copy of production data, same server hardware, same networks,
etc). There may be a full manual regression test cycle or a shorter smoke test as part of applying a new version
onto the production environment. There should also be a set of automated tests and performance tests, similar
to the core release process above, but with production data in place to verify performance with the full data set.

• Follow Best Practices: When working with a production environment, follow all best practices: schedule a
downtime/maintenance window before making any changes; take a full backup of code, configuration and data
at the start of the deployment process; test the new version before re-opening it to production traffic; always
have a roll-back plan if issues arise in production that were not caught in previous testing.

1.7.3 Release Numbering

Version 3 components follow the Semantic Versioning standard:

• Patch releases with bug fixes, small changes and security patches will come out on an as-needed schedule (1.0.1,
1.0.2, etc). Compatibility with past releases under the Major.Minor is expected.

• Minor releases with new functionality will be backwards-compatible (1.1, 1.2, 1.3, etc). Compatibility with
past releases under the same Major number is expected.

• Major releases would be for non-backwards-compatible API changes. When a new major version of a compo-
nent is included in a Reference Distribution release, the Release Notes will document any migration or upgrade
issues.

The Version 3 Reference Distribution follows a milestone release schedule with quarterly releases. Release Notes for
each ref-distro release will include the version numbers of each component included in the distribution. If specific
components have moved by a Minor or Major version number, the Release Notes will describe the changes (such as
new features or any non-backwards-compatible API changes or migration issues).

Version 2 also followed the semantic versioning standard.

Goals

Predictable versioning is critical to enable multiple country implementations to share a common code base and derive
shared value. This is a major goal of the 3.0 Re-Architecture. For example, Country A’s implementation might fix
a bug or add a new report, they would contribute that code to the open source project, and Country B could use it;
and Country B could contribute something that Country A could use. For this to succeed, multiple countries using the
OpenLMIS version 3 series must be upgrading to the latest Patch and Minor releases as they become available. Each
country shares their bug fixes or new features with the open source community for inclusion in the next release.
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Pre-Releases

Starting with version 3, OpenLMIS supports pre-releases following the Semantic Versioning standard.

Currently we suggest the use of beta releases. For example, 3.0 Beta is: 3.0.0-beta.

Note: the use of the hyphen consistent with Semantic Versioning. However a pre-release SHOULD NOT use multiple
hyphens. See the note in Modifiers on why.

Modifiers

Starting with version 3, OpenLMIS utilizes build modifiers to distinguish releases from intermediate or latest builds.
Currently supported:

Modifier: SNAPSHOT Example: 3.0.0-beta-SNAPSHOT Use: The SNAPSHOT modifier distinguishes this build as
the latest/cutting edge available. It’s intended to be used when the latest changes are being tested by the development
team and should not be used in production environments.

Note: that there is a departure with Semantic Versioning in that the (+) signs are not used as a delimiter, rather a
hyphen (-) is used. This is due to Docker Hub not supporting the use of plus signs in the tag name.

For discussion on this topic, see this thread. The 3.0.0 semantic versioning and schedule were also discussed at the
Product Committee meeting on February 14, 2017.

We Prefer Coordination over Branching

Because each component is independently, semantically versioned, the developers working on that component need to
coordinate so they are working towards the same version (their next release).

Each component’s repository has a version file (gradle.properties or project.properties) that states which version is
currently being developed. By default, we expect components will be working on the master branch towards a Patch
release. The developers can coordinate any time they are ready to work on features (for a Minor release).

If developers propose to break with past API compatibility and make a Major release of the component, that should
be discussed on the Dev Forum. They should be ready to articulate a clear need, to evaluate other options to avoid
breaking backwards-compatibility, and to document a migration path for all existing users of the software. Even if
the Dev Forum and component lead decide to release a Major version, we still require automated schema migrations
(using Flyway) so existing users will have their data preserved when they upgrade.

Branching in git is discouraged. OpenLMIS does not use git-flow or a branching-based workflow. In our typical
workflow, developers are all contributing on the master branch to the next release of their component. If developers
need to work on more than one release at the same time, then they could use a branch. For example, if the component
is working towards its next Patch, such as 1.0.1-SNAPSHOT, but a developer is ready to work on a big new feature
for a future Minor release, that developer may choose to work on a branch. Overall, branching is possible, but we
prefer to coordinate to work together towards the same version at the same time, and we don’t have a branch-driven
workflow as part of our collaboration or release process.

Code Reviews and Pull Requests

We expect all code committed to OpenLMIS receives either a review from a second person or goes through a pull
request workflow on GitHub. Generally, the developers who are dedicated to working on OpenLMIS itself have
commit access in GitHub. They coordinate in Slack, they plan work using JIRA tickets and sprints, and during their
ticket workflow a code review is conducted. Code should include automated tests, and the ticket workflow also includes
a human Quality Assurance (QA) step.
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Any other developers are invited to contribute to OpenLMIS using Pull Requests in GitHub at any time. This includes
developers who are implementing, extending and customizing OpenLMIS for different local needs.

For more about the coding standards and how to contribute, see contributionGuide.md.

Future Strategies

As the OpenLMIS version 3 installation base grows, we expect that additional strategies will be needed so that new
functionality added to the platform will not be a risk or a barrier for existing users. Feature Toggles is one strategy the
technical community is considering.

1.7.4 Rolling a Release

Below is the process used for creating and publishing a release of each component as well as the Reference Distribution
(OpenLMIS 3.X.Y).

Goals

What’s the purpose of publishing a release? It gives us a specific version of the software for the community to test
drive and review. Beta releases will be deployed with demo data to the UAT site uat.openlmis.org. That will be a
public, visible URL that will stay the same while stakeholders test drive it. It will also have demo data and will not be
automatically wiped and updated each time a new Git commit is made.

Prerequisites

Before you release, make sure the following are in place:

• Demo data and seed data: make sure you have demo data that is sufficient to demonstrate the features of this
release. Your demo data might be built into the repositories and used in the build process OR be prepared to run
a one-time database load script/command.

• Features are completed for this release and are checked in.

• All automated tests pass.

• Documentation is ready. For components, this is the CHANGELOG.md file, and for the ref-distro this is a
Release Notes page in the wiki.

Releasing a Component (or Updating the Version SNAPSHOT)

Each component is always working towards some future release, version X.Y.Z-SNAPSHOT. A component may
change what version it is working towards, and when you update the serviceVersion of that component, the other
items below need to change.

These steps apply when you change a component’s serviceVersion (changing which -SNAPSHOT the codebase is
working towards):

• If the component that you are about to release depends on the openlmis-service-util, verify that it uses a stable
version of that library. If it uses a snapshot version, a release of openlmis-service-util is required before you can
proceed.

• Within the component, set the serviceVersion property in the gradle.properties file to the new -SNAPSHOT
you’ve chosen.

– See Step 3 below for details.
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• Update openlmis-ref-distro to set docker-compose.yml to use the new -SNAPSHOT this component is working
towards.

– See Step 5 below for details.

– Use a commit message that explains your change. EG, “Upgrade to 3.1.0-SNAPSHOT of openlmis-
requisition component.”

• Update openlmis-deployment to set each docker-compose.yml file in the deployment/ folder for the relevant
environments, probably uat_env/, test_env/, but not demo_env/

– See Step 7 below for details.

– Similar to above, please include a helpful commit message. (You do not need to tag this repo because it is
only used by Jenkins, not external users.)

• Update openlmis-contract-tests to set each docker-compose. . . yml file that includes your component to use
the new -SNAPSHOT version.

– Similar to the previous steps, see the lines under “services:” and change its version to the new snapshot.

– You do not need to tag this repo. It will be used by Jenkins for subsequent contract test runs.

• (If your component, such as the openlmis-service-util library, publishes to Maven, then other steps will be
needed here.)

Releasing the Reference Distribution (openlmis-ref-distro)

When you are ready to create and publish a release (Note that version modifiers should not be used in these steps - e.g.
SNAPSHOT):

1. Select a tag name such as ‘3.0.0-beta’ based on the numbering guidelines above.

2. The service utility library should be released prior to the Services. Publishing to the central repository may take
some time, so publish at least a few hours before building and publishing the released Services:

(a) Update the serviceVersion of GitHub’s openlmis-service-util

(b) Check Jenkins built it successfully

(c) At Nexus Repository Manager, login and navigate to Staging Repositories. In the list scroll until you find
orgopenlmis-NNNN. This is the staged release.

(d) Close the repository, if this succeeds, release it. More information.

(e) Wait 1-2 hours for the released artifact to be available on Maven Central. Search here to check: https:
//search.maven.org/

(f) In each OpenLMIS Service’s build.gradle, update the dependency version of the library to point to the
released version of the library (e.g. drop ‘SNAPSHOT’)

3. In each service, set the serviceVersion property in the gradle.properties file to the version you’ve chosen.
Push this to GitHub, then log on to GitHub and create a release tagged with the same tag. Note that GitHub
release tags should start with the letter “v”, so ‘3.0.0-beta’ would be tagged ‘v3.0.0-beta’. It’s safest to choose
a particular commit to use as the Target (instead of just using the master branch, default). Also, when you
create the version in GitHub check the “This is a pre-release” checkbox if indeed that is true. Do this for each
service/UI module in the project, including the API services and the AngularJS UI repo (note: in that repo, the
file is called project.properties, not gradle.properties). DON’T update the Reference Distribution yet.

(a) Do we need a release branch? No, we do not need a release branch, only a tag. If there are any later fixes
we need to apply to the 3.0 Beta, we would issue a new beta release (eg, 3.0 Beta R1) to publish additional,
specific fixes.
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(b) Do we need a code freeze? We do not need a “code freeze” process. We will add the tag in Git, and
everyone can keep committing further work on master as usual. Updates to master will be automatically
built and deployed at the Test site, but not the UAT site.

(c) Confirm that your release tags appear in GitHub and in Docker Hub: First, look under the Releases tab of
each repository, eg https://github.com/OpenLMIS/openlmis-requisition/releases. Next, look under Tags in
each Docker Hub repository. eg https://hub.docker.com/r/openlmis/requisition/tags/ . You’ll need to wait
for the Jenkins jobs to complete and be successful so give this a few minutes. Note: After tagging each
service, you may also want to change the serviceVersion again so that future commits are tagged on Docker
Hub with a different tag. For example, after releasing ‘3.1.0’ you may want to change the serviceVersion
to ‘3.1.1-SNAPSHOT’. You need to coordinate with developers on your component to make sure everyone
is working on ‘master’ branch towards that same next release. Finally, on Jenkins, identify which build
was the one that built and published to Docker/Maven the release. Press the Keep the build forever button.

4. Update docker-compose.yml in openlmis-ref-distro with the release chosen

(a) For each of the services deployed as the new version on DockerHub, update the version in the docker-
compose.yml file to the version you’re releasing. See the lines under “services:” → serviceName →
“image: openlmis/requisition-refui:3.0.0-beta-SNAPSHOT” and change that last part to the new version
tag for each service.

(b) Commit this change and tag the openlmis-ref-distro repo with the release being made. Note: There is
consideration underway about using a git branch to coordinate the ref-distro release.

5. In order to publish the openlmis-ref-distro documentation to ReadTheDocs:

(a) Edit collect-docs.py to change links to pull in specific version tags of README files. In that script,
change a line like urllib.urlretrieve("https://raw.githubusercontent.com/
OpenLMIS/openlmis-referencedata/master/README.md", "developer-docs/
referencedata.md") to urllib.urlretrieve("https://raw.githubusercontent.
com/OpenLMIS/openlmis-referencedata/v3.0.0/README.md, "developer-docs/
referencedata.md")

(b) To make your new version visible in the “version” dropdown on ReadTheDocs, it has to be set as “active”
in the admin settings on readthedocs (admin -> versions -> choose active versions). Once set active the
link is displayed on the documentation page (it is also possible to set default version).

6. Update docker-compose.yml in openlmis-deployment for the UAT deployment script with the release cho-
sen which is at https://github.com/OpenLMIS/openlmis-deployment/blob/master/deployment/uat_env/docker-
compose.yml

(a) For each of the services deployed as a the new version on DockerHub, update the version in the docker-
compose.yml file to the version you’re releasing.

(b) Commit this change. (You do not need to tag this repo because it is only used by Jenkins, not external
users.)

7. Kick off each -deploy-to-uat job on Jenkins

(a) Wait about 1 minute between starting each job

(b) Confirm UAT has the deployed service. e.g. for the auth service: http://uat.openlmis.org/auth check that
the version is the one chosen.

8. Navigate to uat.openlmis.org and ensure it works

Once all these steps are completed and verified, the release process is complete. At this point you can conduct
communication tasks such as sharing the URL and Release Announcement to stakeholders. Congratulations!
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Links:

• Project Management

– Issue Tracking & Project Management

– Wiki

• Communication

– Slack

– Developer Forum

– Product Comittee Forum

– Governance Comittee Forum

• Development

– GitHub

– DockerHub (Published Docker Images)

– OSS Sonatype (Maven Publishing)

– Transifex (translations and localized text)

– Code Review

– Code Quality Analysis (SonarQube)

– CI Server (Jenkins)

– CD Server

– UAT Server
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