

 [image: OpenLMIS]

Welcome to OpenLMIS’ documentation!

OpenLMIS (Open Logistics Management Information System) is software for a
shared, open source solution for managing medical commodity distribution
in low- and middle-income countries. For more information, see OpenLMIS.org [http://openlmis.org].

Contents:

	Release Notes

	Architecture

	Components

	Contributing

	Conventions

	Deployment

	Versioning and Releasing

Links:

	
	Project Management

	
	Issue Tracking & Project Management [https://openlmis.atlassian.net]

	Wiki [https://openlmis.atlassian.net/wiki/spaces/OP]

	
	Communication

	
	Slack [http://openlmis.slack.com]

	Developer Forum [https://groups.google.com/forum/#!forum/openlmis-dev]

	Product Comittee Forum [https://groups.google.com/forum/#!forum/openlmis_product_committee]

	Governance Comittee Forum [https://groups.google.com/forum/#!forum/openlmis-governance]

	
	Development

	
	GitHub [https://github.com/openlmis]

	DockerHub [https://hub.docker.com/u/openlmis] (Published Docker Images)

	OSS Sonatype [https://oss.sonatype.org/#nexus-search;quick~org.openlmis] (Maven Publishing)

	Code Review [https://review.openlmis.org]

	Code Quality Analysis [http://sonar.openlmis.org] (SonarQube)

	CI Server [http://build.openlmis.org] (Jenkins)

	CD Server [http://test.openlmis.org]

	UAT Server [http://uat.openlmis.org]

Release Notes

To download a release, please visit GitHub [https://github.com/OpenLMIS/openlmis-ref-distro/releases].

	3.2.0 Release Notes - 1 September 2017

For Release Notes before 3.2.0, see Releases [https://openlmis.atlassian.net/wiki/spaces/OP/pages/38371432/Releases] in the OpenLMIS wiki.

For more about OpenLMIS releasing and versioning, see Versioning and Releasing [http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html].

3.2.0 Release Notes - 1 September 2017

Status: Stable

3.2.0 is a stable release, and all users of OpenLMIS version 3 [https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017] are
encouraged to adopt it.

Release Notes

The OpenLMIS Community is excited to announce the 3.2.0 release of OpenLMIS!

This release represents another major milestone in the version 3 series, which is the result of a
software re-architecture [https://openlmis.atlassian.net/wiki/display/OP/Re-Architecture] that
allows more functionality to be shared among the community of OpenLMIS users.

3.2.0 includes a beta version of the new Cold Chain Equipment (CCE) service and other
improvemen ts for Vaccine/EPI programs. This represents the first milestone towards the Vaccines MVP [https://openlmis.atlassian.net/wiki/spaces/OP/pages/113144940/Vaccine+MVP] feature set. 3.2.0
also contains more contributions from the Malawi implementation, a national implementation that
is now live on OpenLMIS version 3.

After 3.2.0, there are further planned milestone releases and patch releases [http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html] that will add more
features to support Vaccine/EPI programs and continue making OpenLMIS a full-featured electronic
logistics management information system (LMIS). Please reference the Living Product Roadmap [https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap] for the upcoming release
priorities. Patch releases will continue to include bug fixes, performance improvements, and pull
requests are welcomed.

Compatibility

All changes are backwards-compatible. Any changes to data include automated migrations from previous
versions back to version 3.0.1. Any exceptions are identified in the Components sections below.

Important: 3.2.0 contains a data migration script that must be applied in order to upgrade from
older version 3 to 3.2.0. This migration has its own GitHub repo and Docker image. See
Adjustment Reason Migration [https://github.com/OpenLMIS/openlmis-adjustment-reason-migration].

For background information on OpenLMIS version 3’s new micro-service architecture,
extensions/customizations, and upgrade paths for OpenLMIS versions 1 and 2, see the 3.0.0 Release
Notes [https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017].

Download or View on GitHub

OpenLMIS Reference Distribution 3.2.0 [https://github.com/OpenLMIS/openlmis-ref-distro/releases/tag/v3.2.0]

New Features

This is a new section to flag all the new features specifically. Hopefully many of these are
configurable or have a toggle so new features will not negatively impact existing implementations.

	CCE Service (beta) and Reference Data contain new features for cold chain equipment (see CCE
component below)

	Stock Management component is now an official release (it was previously a beta component)

	Report service is now its own separate component to provide reporting features (TBD)

Changes to Existing Functionality

Version 3.2.0 contains changes that impact users of existing functionality. Please review these
changes which may require informing end-users and/or updating your customizations/extensions:

	Requisition Service now uses Stock Management to handle adjustment reasons and to store
stock data in stock cards. This change does not alter end-user functionality in Requisitions,
but it does allow users with Stock Management rights to begin viewing stock cards with data
populated from requisitions. This change also requires a data migration script to upgrade olderx
version 3 systems to 3.2.0. (See Requisition component below.)

API Changes

Some APIs have changes to their contracts and/or their request-response data structures. These
changes impact developers and systems integrating with OpenLMIS:

	Auth Service uses Authorization header instead of access_token (see Auth OLMIS-2871 below)

	Fulfillment Service and Requisition Service changed some dates from ZonedDateTime to LocalDate
(see OLMIS-2898 below)

	ReferenceData contains changes to Facility search and Geographic Search APIs (see component below)

	Requisition Service now requires use of the Stock Management service and connects to Stock
service to handle adjustment reasons and store data on stock cards (see Requisition component)

	Configuration settings endpoints (/api/settings) are no longer available; use environment
variables to configure the application (see OLMIS-2612 below)

	postgres database now requires one additional extension: uuid. It is already included in the
postgres component (see postgres component below), but those hosting on Amazon AWS RDS will need
to add the extension.

All Changes by Component

Version 3.2.0 of the Reference Distribution contains updated versions of the components listed
below. The Reference Distribution bundles these component together using Docker to create a complete
OpenLMIS instance. Each component has its own own public GitHub repository (source code) and
DockerHub repository (release image). The Reference Distribution and components are versioned
independently; for details see Versioning and Releasing [http://docs.openlmis.org/en/latest/conventions/versioningReleasing.html].

Auth Service 3.1.0

Improvements which are backwards-compatible:

	OLMIS-1498 [https://openlmis.atlassian.net/browse/OLMIS-1498]: The service will now fetch list
of available services from consul, and update OAuth2 resources dynamically when a new service is
registered or de-registered. Those tokens are no longer hard-coded.

	OLMIS-2866 [https://openlmis.atlassian.net/browse/OLMIS-2866]: The service will no longer used
self-contained user roles (USER, ADMIN), and depend solely on referencedata’s roles for user
management.

	OLMIS-2871 [https://openlmis.atlassian.net/browse/OLMIS-2871]: The service now uses an
Authorization header instead of an access_token request parameter when communicating with other
services.

Source: Auth CHANGELOG [https://github.com/OpenLMIS/openlmis-auth/blob/master/CHANGELOG.md]

CCE Service 1.0.0-beta

This component is a beta of new Cold Chain Equipment functionality to support Vaccines in
medical supply chains. This API service component has an accompanying beta CCE UI component.

CCE 1.0.0-beta includes many new features:

	Configuring a cold chain equipment catalog

	Managing cold chain equipment inventory

	Capturing functionality status of equipment

For details, see the functional documentation: Cold Chain Equipment Management [https://openlmis.atlassian.net/wiki/spaces/OP/pages/113145252/Cold+Chain+Equipment+Management]

Warning: This is a beta component, and is not yet intended for production use. APIs and
functionality are still subject to change until the official release.

Fulfillment Service 6.0.0

Contract breaking changes:

	OLMIS-2898 [https://openlmis.atlassian.net/browse/OLMIS-2898]: Changed POD receivedDate from
ZonedDateTime to LocalDate.

New functionality added in a backwards-compatible manner:

	OLMIS-2724 [https://openlmis.atlassian.net/browse/OLMIS-2724]: Added an endpoint for retrieving
all the available, distinct requesting facilities.

Bug fixes and improvements (backwards-compatible):

	OLMIS-2871 [https://openlmis.atlassian.net/browse/OLMIS-2871]: The service now uses an
Authorization header instead of an access_token request parameter when communicating with other
services.

	OLMIS-3059 [https://openlmis.atlassian.net/browse/OLMIS-3059]: The search orders endpoint now
sorts the orders by created date property (most recent first).

Source: Fulfillment CHANGELOG [https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/CHANGELOG.md]

nginx

TBD

Notification Service 3.1.0

Bug fixes, security and performance improvements (backwards-compatible):

	OLMIS-2871 [https://openlmis.atlassian.net/browse/OLMIS-2871]: The service now uses an
Authorization header instead of an access_token request parameter when communicating with other
services.

Source: Notification CHANGELOG [https://github.com/OpenLMIS/openlmis-notification/blob/master/CHANGELOG.md]

postgres

TBD: explain new version and link to documentation about adding uuid extension

Reference Data Service 8.0.0

Breaking changes:

	OLMIS-2709 [https://openlmis.atlassian.net/browse/OLMIS-2709]: Facility search now returns
smaller objects.

	OLMIS-2698 [https://openlmis.atlassian.net/browse/OLMIS-2698]: Geographic Zone search endpoint
now is paginated and accepts POST requests, also has new parameters: name and code.

New functionality added in a backwards-compatible manner:

	OLMIS-2609 [https://openlmis.atlassian.net/browse/OLMIS-2609]: Created rights to manage CCE and
assigned to system administrator.

	OLMIS-2610 [https://openlmis.atlassian.net/browse/OLMIS-2610]: Added CCE Inventory View/Edit
rights, added demo data for those rights.

	OLMIS-2696 [https://openlmis.atlassian.net/browse/OLMIS-2696]: Added search requisition groups
endpoint.

	OLMIS-2780 [https://openlmis.atlassian.net/browse/OLMIS-2780]: Added endpoint for getting all
facilities with minimal representation.

	Introduced JaVers to all domain entities. Also each domain entity has endpoint to get the audit
information.

	OLMIS-3023 [https://openlmis.atlassian.net/browse/OLMIS-3023]: Added
enableDatePhysicalStockCountCompleted field to program settings.

	OLMIS-2619 [https://openlmis.atlassian.net/browse/OLMIS-2619]: Added CCE Manager role and
assigned CCE Manager and Inventory Manager roles to new user ccemanager.

Bug fixes, security and performance improvements, also backwards-compatible:

	OLMIS-2871 [https://openlmis.atlassian.net/browse/OLMIS-2871]: The service now uses an
Authorization header instead of an access_token request parameter when communicating with other
services.

	OLMIS-2534 [https://openlmis.atlassian.net/browse/OLMIS-2534]: Fixed potential huge performance
issue.

	OLMIS-2716 [https://openlmis.atlassian.net/browse/OLMIS-2716]: Set productCode field in
Orderable as unique.

Source: ReferenceData CHANGELOG [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/CHANGELOG.md]

Reference UI 6.0.0

The Reference UI bundles the following UI components together using Docker images specified in its
compose file [https://github.com/OpenLMIS/openlmis-reference-ui/blob/master/docker-compose.yml].

auth-ui 5.0.3

See openlmis-auth-ui CHANGELOG [https://github.com/OpenLMIS/openlmis-auth-ui/blob/master/CHANGELOG.md]

cce-ui 1.0.0-beta

Beta release of CCE UI [https://github.com/OpenLMIS/openlmis-cce-ui]. See CCE service component
below for more info.

fulfillment-ui 5.0.3

See openlmis-fulfillment-ui CHANGELOG [https://github.com/OpenLMIS/openlmis-fulfillment-ui/blob/master/CHANGELOG.md]

referencedata-ui 5.2.1

See openlmis-referencedata-ui CHANGELOG [https://github.com/OpenLMIS/openlmis-referencedata-ui/blob/master/CHANGELOG.md]

report-ui 5.0.3

See openlmis-report-ui CHANGELOG [https://github.com/OpenLMIS/openlmis-report-ui/blob/master/CHANGELOG.md]

requisition-ui 5.1.1

See openlmis-requisition-ui CHANGELOG [https://github.com/OpenLMIS/openlmis-requisition-ui/blob/master/CHANGELOG.md]

stockmanagement-ui 1.0.0

First release of Stock Management UI [https://github.com/OpenLMIS/openlmis-stockmanagement-ui].
See Stock Management service component below for more info.

ui-components 5.1.1

See openlmis-ui-components CHANGELOG [https://github.com/OpenLMIS/openlmis-ui-components/blob/master/CHANGELOG.md]

ui-layout:5.0.2

See openlmis-ui-layout CHANGELOG [https://github.com/OpenLMIS/openlmis-ui-layout/blob/master/CHANGELOG.md]

Report Service 1.0.0

TBD

Requisition Service 5.0.0

Contract breaking changes:

	OLMIS-2612 [https://openlmis.atlassian.net/browse/OLMIS-2612]: Configuration settings endpoints
(/api/settings) are no longer available. Use environment variables to configure the application.

	MW-365 [https://openlmis.atlassian.net/browse/MW-365]: Requisition search endpoints:
requisitionsForApproval and requisitionsForConvert will now return smaller basic dtos.

	OLMIS-2833 [https://openlmis.atlassian.net/browse/OLMIS-2833]: Added date physical stock count
completed to Requisition

	OLMIS-2671 [https://openlmis.atlassian.net/browse/OLMIS-2671]: Stock Management service is now
required by Requisition

	OLMIS-2694 [https://openlmis.atlassian.net/browse/OLMIS-2694]: Changed Requisition adjustment
reasons to come from Stock Service

	OLMIS-2898 [https://openlmis.atlassian.net/browse/OLMIS-2898]: Requisition search endpoint
takes from/to parameters as dates without time part.

	OLMIS-2830 [https://openlmis.atlassian.net/browse/OLMIS-2830]: As of this version, Requisition
now uses Stock Management as the source for adjustment reasons, moreover it stores snapshots of
these available reasons during initiation. Important: in order to migrate from older versions,
running this migration is required: https://github.com/OpenLMIS/openlmis-adjustment-reason-migration

New functionality added in a backwards-compatible manner:

	OLMIS-2709 [https://openlmis.atlassian.net/browse/OLMIS-2709]: Changed ReferenceData facility
service search endpoint to use smaller dto.

	The /requisitions/requisitionsForConvert endpoint accepts several sortBy parameters. Data returned
by the endpoint will be sorted by those parameters in order of occurrence. By defaults data will
be sorted by emergency flag and program name.

	OLMIS-2928 [https://openlmis.atlassian.net/browse/OLMIS-2928]: Introduced new batch endpoints,
that allow retrieval and approval of several requisitions at once. This also refactored the error
handling.

Bug fixes added in a backwards-compatible manner:

	OLMIS-2788 [https://openlmis.atlassian.net/browse/OLMIS-2788]: Fixed print requisition.

	OLMIS-2747 [https://openlmis.atlassian.net/browse/OLMIS-2747]: Fixed bug preventing user from
being able to re-initiate a requisition after being removed, when there’s already a requisition
for next period.

	OLMIS-2871 [https://openlmis.atlassian.net/browse/OLMIS-2871]: The service now uses an
Authorization header instead of an access_token request parameter when communicating with other
services.

	OLMIS-2534 [https://openlmis.atlassian.net/browse/OLMIS-2534]: Fixed potential huge performance
issue. The javers log initializer will not retrieve all domain objects at once if a repository
implemenets PagingAndSortingRepository

	OLMIS-3008 [https://openlmis.atlassian.net/browse/OLMIS-3008]: Add correct error message when
trying to convert requisition to an order with approved quantity disabled in the the requisition
template.

	OLMIS-2908 [https://openlmis.atlassian.net/browse/OLMIS-2908]: Added a unique partial index on
requisitions, which prevents creation of requisitions which have the same facility, program and
processing period while being a non-emergency requsition. This is now enforced by the database,
not only the application logic.

	OLMIS-3019 [https://openlmis.atlassian.net/browse/OLMIS-3019]: Removed clearance of beginning
balance and price per pack fields from skipped line items while authorizing.

Source: Requisition CHANGELOG [https://github.com/OpenLMIS/openlmis-requisition/blob/master/CHANGELOG.md]

Stock Management 1.0.0

This is the first official release of the new Stock Management service. Its beta version was
previously released in Reference Distribution 3.1.0. Since then, the major improvements are:

	OLMIS-2710 [https://openlmis.atlassian.net/browse/OLMIS-2710]: Configure VVM use per product

	OLMIS-2654 [https://openlmis.atlassian.net/browse/OLMIS-2654] and OLMIS-2663 [https://openlmis.atlassian.net/browse/OLMIS-2663]: Record VVM status with physical
stock count and adjustments

	OLMIS-2711 [https://openlmis.atlassian.net/browse/OLMIS-2711]: Change Physical Inventory to
include reasons for discrepancy

	OLMIS-2834 [https://openlmis.atlassian.net/browse/OLMIS-2834]: Requisition form info gets
pushed into Stock cards (see more in Requisition component)

	plus lots of technical work including Flyway migrations, RAML, tests, validations, translations,
documentation, and demo data.

Watch a video demo of the Stock Management functionality:
https://www.youtube.com/watch?v=QMcXX3tUTHE (English) or
https://www.youtube.com/watch?v=G8BK0izxbnQ (French)

Now that this is an official release, the Stock service is considered stable for production use.
Future changes to functionality or APIs will be tracked and documented.

For a list of all commits since 1.0.0-beta, see GitHub commits [https://github.com/OpenLMIS/openlmis-stockmanagement/commits/master]

Components with No Changes

Other tooling components have not changed, including: the logging service [https://github.com/OpenLMIS/openlmis-rsyslog] and a library for shared Java code called
service-util [https://github.com/OpenLMIS/openlmis-service-util].

Contributions

Thanks to the Malawi implementation team who has continued contributing many pull requests to add
functionality, performance improvements, and customization in ways that have global shared benefit.
Also, thanks to everyone who contributed to OpenLMIS 3.0.0 [https://openlmis.atlassian.net/wiki/spaces/OP/pages/88670325/3.0.0+Release+-+1+March+2017#id-3.0.0Release-1March2017-Contributors].

Further Resources

View all JIRA Tickets in 3.2.0 [https://openlmis.atlassian.net/issues/?jql=statusCategory%20%3D%20done%20AND%20project%20%3D%2011100%20AND%20fixVersion%20%3D%203.2%20ORDER%20BY%20type%20ASC%2C%20priority%20DESC%2C%20key%20ASC].

Learn more about the OpenLMIS Community [http://openlmis.org/about/community/] and how to get
involved!

Architecture

As of OpenLMIS v3, the architecture [https://openlmis.atlassian.net/wiki/x/IYAKAw]
has transitioned to (micro) services fulfilling RESTful (HTTP) API requests
from a modularized Reference UI. Extension mechanisms in addition to
microservices and UI modules further allow for components of the architecture
to be customized without the need for the community to fork the code base:

	UI modules give flexibility in creating new user experiences or changing existing ones

	Extension Points & Modules - allows Service functionality to be modified

	Extra Data - allows for extensions to store data with existing components

Combined these components allow the OpenLMIS community to customize and
contribute to a shared LMIS.

Docker

Docker Engine and Docker Compose is utilized throughout the tech stack to
provide consistent builds, quicken environment setup and ensure that there are
clean boundaries between components. Each deployable component is versioned
and published as a Docker Image to the public Docker Hub. From this repository
of ready-to-run images on Docker Hub anyone may pull the image down to run the
component.

Development environments are typically started by running a single Service or
UI module’s development docker compose. Using docker compose allows the
component’s author to specify the tooling and test runtime (e.g. PostgreSQL)
that’s needed to compile, test and build and package the production docker
image that all implementation’s are intended to use.

After a production docker image is produced, docker compose is used once again
in the Reference Distribution to combine the desired deployment images with the
needed configuration to produce an OpenLMIS deployment.

UI

	OpenLMIS-UI Application Structure

	Build Process

	UI Extention Guide

OpenLMIS-UI Application Structure

The OpenLMIS-UI is an Angular V1 application that communicates with OpenLMIS Services to create a human-centered user-interface to the OpenLMIS application. This UI application is meant to be extendable, and provide a framework for developers to create a consistent experience.

This UI aims to support accessiblity, consistency, and i18n compliance.

This is a high-level overview of how the OpenLMIS-UI functions, for more details please see:

	UI build process documentation

	UI extention guide

	UI coding conventions

The OpenLMIS-UI is an AngularJS browser application that is built from multiple sources into a single app. The OpenLMIS-UI works with the OpenLMIS Services using RESTful HTTP requests.

Core technologies:

	Javascript and AngularJS v1.6 [https://angularjs.org/]

	Docker [https://www.docker.com/] and NodeJS for compiling a single page application from multiple sources

	Sass variables and mixins [http://sass-lang.com/] for easy style extention

	UI-Router [https://github.com/angular-ui/ui-router] for page definition

Page Load

The entire OpenLMIS-UI is a single page application that is loaded in a single HTML page. The page loads a single CSS and a single Javascript file that are generated from the build process. A loading icon is shown while the HTML page waits for javascript file to load and run.

When the HTML page is loaded, an Angular applicaiton called ‘openlmis’ is started, which requires all other Javascript modules that make up the OpenLMIS-UI application. No module should ever require ‘openlmis’ or add a module directly to it. The ‘openlmis’ AngularJS module is dynamically built during the build process.

Page Views

The OpenLMIS-UI is state driven, meaning the browser’s URL determines what is displayed on the screen (with some exceptions). Once the application starts, the browser’s current URL is parsed by UI-Router; this populates the application view and retrieves data from the OpenLMIS Services.

Not all page views are directly defined as a page route. Some modules will provide functionality that intercepts page views or data requests to the OpenLMIS services, and provide custom logic. Examples of this are authentication and offline modules.

Authentication

Authentication with the OpenLMIS services is handled by the openlmis-auth-ui by intercepting UI-Router and $HTTP requests. The access tokens used by OpenLMIS are managed by interceptors, and are automatically appended to all requests to the OpenLMIS services. No OpenLMIS-UI modules should need to include openlmis-auth because it’s included by the OpenLMIS-UI application.

Offline and Low-Bandwidth

The OpenLMIS-UI supports users who are offline or have low-bandwidth connections by focusing on the browser’s AppCache and localstorage technologies.

Build Process

The OpenLMIS-UI functions as a single-page application that is created through a Grunt-based build process.

This document details the different workflows a developer might use while working on the OpenLMIS-UI.

Docker Architecture

To create a modular single page application, we are using Docker and NodeJS to build multiple git repositories together into the working UI layer for OpenLMIS. The pattern that the OpenLMIS-UI follows is extremely similar to the micro-services architecture used in OpenLMIS, with the large difference being that the OpenLMIS-UI is compiled and does not ‘discover’ UI components.

There are 3 types of Docker images that need to be combined to make a functional UI

	A tooling image that stores core components which can compile the UI (see OpenLMIS/Dev-UI) [https://github.com/OpenLMIS/dev-ui]

	Source code images that contain Javascript, HTML, CSS/SCSS, and other assets that make up functional sections of the OpenLMIS-UI (See OpenLMIS-Requisition-UI) [https://github.com/OpenLMIS/openlmis-requisition-refUI]

	A publishing image, that compiles the source code images and builds a working web server that is included into the OpenLMIS Server. Small adjustments like branding should be made in the publishing image. (See OpenLMIS/Reference-UI) [https://github.com/OpenLMIS/openlmis-requisition-refUI]

When the OpenLMIS-UI is compiled, the source code images will overwrite each other, according to the order specified in the config.json file (see Dev-UI Documentation). This makes it possible to override assets or sections of behavior in a simple process.

Note: The decision to use implicit over-writing of files rather than an explicit configuration came from Javascript’s global name space which would cause problems if two Javascript objects had the same name.

Example:
There are 2 images being included into a publishing image, and they have files at the following paths:

OpenLMIS-UI-Common

	src/common/ logo.png

	src/common/ header.scss

OpenLMIS-Requisition-UI

	src/requisition/ requisition.js

	src/requisition/ requisition.routes.js

Example-UI-Distribution

	src/common/ logo.png

	src/requisition/ requisition.routes.js

When comiled the following sources will be used:

	Example-UI-Distribution/ src/common/ logo.png (new logo)

	OpenLMIS-UI-Common/ src/common/ header.scss

	OpenLMIS-Requisition-UI/ src/requisition/ requisition.js

	Example-UI-Distribution/ src/requisition/ requisition.routes.js (changed requisition pages that are available)

Standard Build

The most standard way to build the OpenLMIS-UI is to run grunt build which will concatinate, and compile the OpenLMIS-UI into a working set of front-end assets that are ready for development. When run, the following high level tasks will be exectuted:

	clean the build directory

	-style check files in src-

	create OpenLMIS application in build/webapp

	run unit test in src against build/webapp/openlmis.js

	create OpenLMIS styleguide in build/styleguide

	create OpenLMIS Javascript Documentation in build/docs

Build Flags

There are a number of settings that can be set when building the OpenLMIS-UI.

Production

Running a command with the --production flag will make the grunt build command compress all file types, getting the UI ready for production rather than development.

grunt build --production

Unit tests

Running unit tests can be skipped by adding the --noTest flag to the command.

grunt build --noTest

Styleguide

Building the styleguide can be skipped by adding --noStyleguide to the command.

grunt build --noStyleguide

Javascript Documentation

Choose not to build the Javascipt Documentation by add --noDocs to the command.

grunt build --noDocs

Application

Build only the OpenLMIS application, and skip all tests by adding --appOnly to the command.

grunt build --appOnly

Service Paths

Since the OpenLMIS Services might be in a different location than the OpenLMIS-UI, you can change the path to the OpenLMIS server location through a build flag. There are actually hooks to use OpenLMIS services hosted in different locations.

OpenLMIS Server path

--openlmisServerURL is the path to the main OpenLMIS server. This URL will be prepended to all other service paths, unless the service path starts with http

grunt build --openlmisServerURL=http://somewhere.com/

Auth Service path

grunt build --authServiceURL=/where/to/find/auth

Requisition Service path

grunt build --requisitionServiceURL=http://requisitions.are/here

Proxy Service

If the OpenLMIS-UI is located at a different root domain than the OpenLMIS Services, the browser will not run the OpenLMIS-UI because of CORS errors. Since it is not always practical to set up CORs on a development instance of OpenLMIS — while developing the UI a developer can use the --addProxyService a command, which will prepend a proxy service location to any OpenLMIS Server URL.

A developer will also need to start a proxy service on the development server by running grunt serve --addProxyService

// sets the openlmisServerURL to 'http://127.0.0.1:3000/http://over/there'
grunt build --openlmisServerURL=http://over/there --addProxyService

// starts a proxy server at http://127.0.0.1:3000
grunt serve --addProxyService

Automatic Building

When working on the OpenLMIS-UI it’s convient to have the entire UI rebuilt when changes are made to the source files. This is achieved by running grunt watch. Everytime a file change is detected in src/ grunt will re-run the build process with all the flags from when grunt watch was run.

It is recommended that one run grunt watch to speed up application development

grunt watch --openlmisServerURL=http://where.openlmis.is/

Test Driven Development

A test driven development server can be run, where each time the build/openlmis.js or any unit test file is change will trigger the unit tests to be automatically rerun. This is a great way to karma and phantomjs tests because the test browser is never closed, meaning tests will run much faster.

grunt karma:tdd

Debugging Test Driven Development

Debugging karma tests can be difficult, but to ease the process you can debug tests in your machines local browser by visiting Karma’s local server. When debugging you can set break points in unit tests or OpenLMIS-UI source files. Instructions for capturing a browser manually are on this page. [https://karma-runner.github.io/1.0/config/browsers.html]

When karma starts, the console will output the karma server location, which will look like:

01 01 1970 0:0:0.0:INFO [karma]: Karma v0.13.22 server started at http://localhost:9876/

Then take your browser and go to http://localhost:9876 (which might change depending on if a process is already using the port).

Once the page loads you will see the karma tests are run again, but this time there are two sets of tests running (once in PhantomJS, and once in your browser). In the right hand corner there is a debug button, which will open a new window where you can view all the test output in the console and set breakpoints using your browser’s developer tools.

UI Extention Guide

This document outlines how to extend the OpenLMIS-UI. The extention mechanims are presented by the type of extention an implementer wants to achieve, and has brief code samples — more detailed code samples are availble in the OpenLMIS-UI coding conventions.

NOTE: Implementers are encouraged to not override files to create maintainable extentions. There are definitely situations where it makes sense to quickly override a file to create desired functionality. Overriding files makes recieving or sharing working code with other OpenLMIS-UI repositories difficult, which is why this technique is discouraged.

The extentions the OpenLMIS-UI supports are:

	Content such as specific message strings, images, or specific parts of HTML markup

	Styles such as CSS presentation and AngularJS directives

	Javascript Objects such as AngularJS services, factories, and controllers that control application logic

	Pages meaning adding new pages to the OpenLMIS-UI, completely replacing an existing page, or adding additional content to a specific screen.

To learn more about the types of files, and how they can be extended, see the OpenLMIS-UI coding conventions.

Content

Most of the content in the OpenLMIS-UI is returned from the OpenLMIS Services, which should be modified in the OpenLMIS Services themselves. Other forms of content are static messages and images used throughout the OpenLMIS-UI.

Messages

Messages are translateable pieces of content that are a part of the OpenLMIS-UI. The best way to update a message is by configuring the OpenLMIS-UI to use your implementation’s Transifex settings and editing the message directly in Transifex. What Transifex does is replace a message key, which is defined in the UI, with a human readable message. This is how the OpenLMIS-UI supports multiple languages.

See the example below:

<!-- HTML similar to this, will be updated by Transifex once the OpenLMIS-UI is built and run in a browser -->
<p>{{ 'example.instructions' | message }}</p>

<!-- The above message will be displayed to a person using the OpenLMIS-UI as: -->
<p>These are some instructions</p>

The strategy in the OpenLMIS-UI is to not reuse message keys, allowing an implementer to further customize small messages such as ‘Search’ to ‘Search Facilities’ if this is a need in an implementation.

An implementer can also create their own messages_en.json file and override specific message keys with their own translations. This is the recommended way to update a message key IF the implementation uses a single language.

Interpolated messages can’t use data that is not directly passed to the message when it is parsed. This means that an implementer might need to extend a Javascript object or HTML file to get the desired output.

Images

Individual images are also easy to change, either by overriding the CSS style (see CSS extention section) or by overriding the image file.

To replace the default logo, it is best to override the logo.png file in the publishing image. Since image files are static and should only be placed with CSS — there is no technical debt incurred by replacing an image file.

Global Styles

Global styles refer to CSS styles and AngularJS directives that create the appearance and affordance of the OpenLMIS-UI. The coding conventions promote simple and semantic HTML to allow for complex behavior to be added by CSS and AngularJS. This allows for implementers to override the complex behaviors to fit their needs from a single point.

CSS and SASS

There should be no special method of removing or explicitly overriding CSS — an implementer should simply use more specific CSS rules to override a CSS style. The CSS coding conventions stress using shallow selectors and avoiding the !important selector, so that its easy for an implementor to make style changes in a publishing image.

// In general, overriding a style is as simple as adding a higher level selector like 'body'
// Here is how an implementer might make all the links in the OpenLMIS-UI underlined

body a {
 text-decoration: underline;
}

In addition to keeping the CSS simple, the OpenLMIS-UI uses SASS variables to implement colors and spacing across the UI, which means changing a color is as simple as declaring a variable. The OpenLMIS-UI’s sass varibles follow a semantic naming pattern, and !default variables are implemented in smaller files, which make it easy to update patterns.

To update Sass variables in a publishing image, create a file src/variables.scss and declare variables without !default

$brand-primary: #FDFB50; // Turned most branding elements a disgusting yellow
$brand-danger: #AE4442; // Made error elements use a darker more brown red

AngularJS Directives

Within the OpenLMIS-UI, we use AngularJS directives to keep HTML markup semantic and have AngularJS create the improved interactive experience. The OpenLMIS-UI attempts to provide a simple, accessible, and usable experience – but for some implementations these patterns might need to be changed.

Overriding or ignoring files that create directives is good way to change a directive for a specific implementation, since these changes are locale specific. Anything that is locale specific we assume will not be returned to the OpenLMIS-UI core repositories.

There might be reasons to change a directive’s implementation slightly, and to do this we recommend following AngularJS’s decorator pattern for directives. [https://docs.angularjs.org/guide/decorators#directive-decorator-example] This method allows you to change what happens when a directive is instantiated, but won’t allow for access to any internal methods within the directive. Always add your modifications to a different module than the directive you are implement to ensure unit tests run correctly.

Sometimes it’s simpler to create a second directive that will run before (or after) the directive you are modifying. To understand how this is done, see the AngularJS documentation on directive priority. [https://docs.angularjs.org/api/ng/service/$compile#-priority-].

Javascript Objects

Javascript objects refer to AngularJS objects such as services, factories, or controllers. These objects fetch data and process data used throughout the OpenLMIS-UI. For this reason, they are the best place to add extentions that modify OpenLMIS-UI workflows and logic. Each OpenLMIS-UI module might be constructed slightly differently, so consult the OpenLMIS-UI documentation to decide which Javascript Object to extend.

An implementation might change a Javascript Object to:

	Change the URL that data is loaded from

	Perform secondary calculations on data before it is shown to the user

	Modify OpenLMIS-UI workflows by opening an additional modal

To make these changes, we use AngularJS’s decorator method. [https://docs.angularjs.org/guide/decorators] — each type of OpenLMIS-UI object has their own extention methods documented in the OpenLMIS-UI coding conventions.

The most important point to remember is to add these extentions in a different module than where the Javascript object is defined. The reason for doing this is to keep the original unit tests applied (and working) for the object BEFORE your extentions are added to the object.

Pages

Pages are the primary unit of any application, and the OpenLMIS-UI has support for adding new pages, replacing existing pages, and adding content to existing pages.

New Pages

To add a new page to OpenLMIS-UI an implementer needs to register a page with UI-Router. The OpenLMIS-Navigation directive can expose pages registered with UI-Router, which is used within the OpenLMIS-UI in the main header navigation, meaning that new pages are exposed to a user in the OpenLMIS-UI. See the UI coding conventions for specifics on how to add a route, and the configuration options available.

Here is a simple example.

// Consider adding a view to see requisitions on a map
angular.module('custom-module').config(function($stateProvider){
 $stateProvider.state('requisitions.map', {
 url: '/map',
 showInNavigation: true,
 controller: 'MyCustomMapController',
 templateUrl: 'map/page.html'
 });
});

NOTE: Adding new pages to the OpenLMIS-UI should mostly be done in source code images, if the page adds functionality. If the page is implementation specific it sould be added in a publishing image.

Replacing an Existing Screen

We expect that some implementations will need to make small changes to existing pages within the OpenLMIS-UI that go beyond the previous extention techniques mentiond. The most simple method of replacing a screen is implicitly replacing the *.routes.js file where the route is defined. Overriding these files doesn’t risk much technical debt, as these files are mostly configuration and rarely contain the definition of more than one screen.

A more complex alternative is to modify the UI-Router configuration at run-time, which would allow for very nuanced changes that require their own unique unit tests. The following example shows how to change a page’s template depending on a user’s access rights. NOTE: This is an invasive techinque, and should only be done if all other extention methods don’t work

angular.module('custom-module').run(function($state){
 var state = $state.get('home'); // get the current home page state
 state.view.templateUrl = 'new_tempalte.html';
 // gotta figure out how to change this...
});

Extending a Screen

This functionality is still underdevelopment, see OLMIS-1682: Extention directive to allow insertion of UI components [https://openlmis.atlassian.net/browse/OLMIS-1682] for implementation details.

HTML Layouts

There might be places where an implementor needs to completely change the layout of a page or element. An example of this might be adding an additional header, or a paragraph of instructions. This is simple because of AngularJS’s markup pattern and the implicit file replacement.

Forking the HTML markup does mean checking to make sure there were no changes to the original file when there was an update — but AngularJS was created to keep the markup simple and we write our HTML to keep as much logic out of the markup as possible. We still recommend an implement makes layout changes using CSS, rather than forking a file, if possible.

Let’s consider wanting to add a large footer element to the OpenLMIS-UI (which might contain help information or an emergency phone number). To do this, an implementer would replace the main index.html file [https://github.com/OpenLMIS/openlmis-requisition-refUI/blob/master/src/main/webapp/index.html] and add a CSS file with the styling needed.

The HTML markup in this new index.html file might look like:

<!-- NOTE: Dropped the HTML and HEAD sections -->
<body >
 <header ng-if="userIsAuthenticated">
 <div ng-include="'openlmis-header/header.html'" offline ng-class="{'isOffline':isOffline}" ></div>
 <div class="navbar">
 <openlmis-navigation class="nav navbar-nav"></openlmis-navigation>
 <openlmis-locale class="navbar-right locale-container"></openlmis-locale>
 </div>
 </header>
 <div ui-view></div>
 <!-- This is new -->
 <footer>
 ... phone numbers and additional information here ...
 </footer>
 <!-- /new -->
 </body>

NOTE: The main index.html was designed to be extremely minimal so that implementations could make huge changes quickly. Other HTML files within OpenLMIS follow this same paradigm of easy to replace HTML.

Components

Auth

Security credentials, Authentication and Authorization. Uses OAuth2.

	Auth Service

	Auth UI

	Auth ERD

	Static Documentation for Auth API [http://build.openlmis.org/job/OpenLMIS-auth-service/275/artifact/build/resources/main/api-definition.html]

Fulfillment Service

Includes the basics of fulfillment.

	Fulfillment Service

	Fulfillment UI

	Fulfillment ERD

	Static Documentation for Fulfillment API [http://build.openlmis.org/job/OpenLMIS-fulfillment-service/326/artifact/build/resources/main/api-definition.html]

CCE Service

Allows managing Cold Chain Equipment.

	CCE Service

	CCE ERD

	Static Documentation for CCE API [http://build.openlmis.org/job/OpenLMIS-cce-service/127/artifact/build/resources/main/api-definition.html]

Report Service

Allows managing reports.

	Report Service

	Report ERD

	Static Documentation for Report API [http://build.openlmis.org/job/OpenLMIS-report-service/28/artifact/build/resources/main/api-definition.html]

Notification Service

Notifying users when their attention is needed.

	Static Documentation for Notification API [http://build.openlmis.org/job/OpenLMIS-notification-service/117/artifact/build/resources/main/api-definition.html]

Reference Data Service

Provides the reference data for the rest of the processes: facilities, programs, products, etc.

	Reference Data Service

	Reference Data UI

	Reference Data ERD

	Static Documentation for Reference Data API [http://build.openlmis.org/job/OpenLMIS-referencedata-service/939/artifact/build/resources/main/api-definition.html]

Reference UI

The Reference UI compiles together all the assets that make up the OpenLMIS-UI. See the build process documentation to understand exactly how the UI is compiled.

	UI Styleguide [http://build.openlmis.org/job/OpenLMIS-reference-ui/lastSuccessfulBuild/artifact/build/styleguide/index.html#!/login]

	Javascript Documentation [http://build.openlmis.org/job/OpenLMIS-reference-ui/lastSuccessfulBuild/artifact/build/docs/index.html#/api]

	Reference UI

	UI Layout

	UI Components

	Dev UI

Requisition Service

Requisition (pull) based replenishment process.

	Requisition Service

	Requisition UI

	Requisition ERD

	Static Documentation for Requisition API [http://build.openlmis.org/job/OpenLMIS-requisition-service/1705/artifact/build/resources/main/api-definition.html]

Stock Management Service

Electronic stock cards.

	Stock Management Service

	Stock Management UI

	Stock Management ERD

	Static Documentation for Stock Management API [http://build.openlmis.org/job/OpenLMIS-stockmanagement-service/403/artifact/build/resources/main/api-definition.html]

Contributing

OpenLMIS is an open source community which appreciates the work of its
contributors. Through contribution we’re able to build a knowledgable community
and make a wider impact than we would apart.

Contributing takes work so these guides aim to make that work clear
and manageable:

	Contributing to OpenLMIS

	Contribute documentation

Contributing to OpenLMIS

By contributing to OpenLMIS, you can help bring life-saving medicines to low- and middle-income countries.
The OpenLMIS community welcomes open source contributions. Before you get started, take a moment to review this
Contribution Guide, get to know the community [https://openlmis.org/about/community/] and join in on the
developer forum [https://groups.google.com/forum/#!forum/openlmis-dev].

The sections below describe all kinds of contributions, from bug reports to contributing code and translations.

Reporting Bugs

The OpenLMIS community uses JIRA for tracking bugs [https://openlmis.atlassian.net/projects/OLMIS/issues/].
This system helps track current and historical bugs, what work has been done, and so on. Reporting a bug with this
tool is the best way to get the bug fixed quickly and correctly.

Before you report a bug

	Search to see if the same bug or a similar one has already been reported. If one already exists, it saves
you time in reporting it again and the community from investigating it twice. You can add comments or explain
what you are experiencing or advocate for making this bug a high priority to fix quickly.

	If the bug exists but has been closed, check to see which version of OpenLMIS it was fixed on (the Fix Version in
JIRA) and which version you are using. If it is fixed in a newer version, you may want to upgrade. If you cannot
upgrade, you may need to ask on the technical forums.

	If the bug does not appear to be fixed, you can add a comment to ask to re-open the bug report or file a new one.

Reporting a new bug

Fixing bugs is a time-intensive process. To speed things along and assist in fixing the bug, it greatly helps to send
in a complete and detailed bug report. These steps can help that along:

	First, make sure you search for the bug! It takes a lot of work to report and investigate bug reports, so please do
this first (as described in the section Before You Report a Bug above).

	In the Description, write a clear and concise explanation of what you entered and what you saw, as well as what you
thought you should see from OpenLMIS.

	Include the detailed steps, such as the Steps in the example below, that someone unfamiliar with the bug can use to
recreate it. Make sure this bug occurs more than once, perhaps on a different personal computer or web browsers.

	The web browser (e.g. Firefox), version (e.g. v48), OpenLMIS version, as well as any custom modifications made.

	Your priority in fixing this bug

	If applicable, any error message text, stack trace, or logging output

	If possible and relevant, a sample or view of the database - though don’t post sensitive information in public

Example Bug Report

Requisition is not being saved
OpenLMIS v3.0, Postgres 9.4, Firefox v48, Windows 10

When attempting to save my in-progress Requisition for the Essential Medicines program for the reporting period of Jan 2017,
I get an error at the bottom of the screen that says "Whoops something went wrong".

Steps:

1. log in

2. go to Requistions->Create/Authorize

3. Select My Facility (Facility F3020A - Steinbach Hospital)

4. Select Essential Medicines Program

5. Select Regular type

6. Click Create for the Jan 2017 period

7. Fill in some basic requested items, or not, it makes no difference in the error

8. Click the Save button in the bottom of the screen

9. See the error in red at the bottom. The error message is "Whoops something went wrong".

I expected this to save my Requisition, regardless of completion, so that I may resume it later.

Please see attached screenshots and database snapshot.

Contributing Code

The OpenLMIS community welcomes code contributions and we encourage you to fix a bug or implement a new feature.

Coordinating with the Global Community

In reviewing contributions, the community promotes features that meet the broad needs of many countries for
inclusion in the global codebase. We want to ensure that changes to the shared, global code will not
negatively impact existing users and existing implementations. We encourage country-specific customizations to
be built using the extension mechanism. Extensions can be shared as open source projects so that other countries
might adopt them.

To that end, when considering coding a new feature or modification, please:

	Review your feature idea with the Product Committee [https://openlmis.atlassian.net/wiki/display/OP/Product+Committee].
They may help inform you about how other country needs overlap or differ. They may also consider including a new
feature in the global codebase using the New Feature Verification Process [https://openlmis.atlassian.net/wiki/display/OP/New+Feature+Verification+Process]
or reviewing the Global vs. Project-Specific Features wiki [https://openlmis.atlassian.net/wiki/display/OP/Global+vs.+Project-Specific+Features].

	Before modifying or extending core functionality, email the developer forum [https://groups.google.com/forum/#!forum/openlmis-dev]
or contact the Technical Committee [https://openlmis.atlassian.net/wiki/display/OP/Technical+Committee].
They can help share relevant resources or create any needed extension points (further details below).

Extensibility and Customization

A prime focus of version 3 is enabling extensions and customizations to happen without forking the codebase.

There are multiple ways OpenLMIS can be extended, and lots of documentation and starter code is available:

	The Reference UI supports extension by adding CSS, overriding HTML layouts, adding new screens, or replacing
existing screens in the UI application. See the UI Extension Architecture and Guide [https://github.com/OpenLMIS/openlmis-requisition-refUI/blob/master/docs/extention_guide.md].

	The Reference Distribution is a collection of collaborative Services, Services may be added in
or swapped out to create custom distributions.

	The Services can be extended using extension points in the Java code. The core team is eager to add more
extension points as they are requested by implementors. For documentation about this extension mechanism, see
these 3 READMEs: openlmis-example-extensions README [https://github.com/OpenLMIS/openlmis-example-extensions/blob/master/README.md], openlmis-example-extension module README [https://github.com/OpenLMIS/openlmis-example-extension/blob/master/README.md], and openlmis-example service README [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#extension-points-and-extension-modules].

	Extra Data allows for clients to add additional data to RESTful resources so that the internal
storage mechanism inside a Service doesn’t need to be changed.

	Some features may require both API and UI extensions/customizations. The Technical Committee worked on a Requisition Splitting Extension Scenario [https://openlmis.atlassian.net/wiki/display/OP/Requisition+Splitting+-+Extension+Scenario+Analysis]
that illustrates how multiple extension techniques can be used in parallel.

To learn more about the OpenLMIS extension architecture and use cases, see: https://openlmis.atlassian.net/wiki/x/IYAKAw.

Extension Points

To avoid forking the codebase, the OpenLMIS community is committed to providing extension points to enable anyone
to customize and extend OpenLMIS. This allows different implementations to share a common global codebase, contribute
bug fixes and improvements, and stay up-to-date with each new version as it becomes available.

Extension points are simply hooks in the code that enable some implementations to extend the system with different
behavior while maintaining compatibility for others. The Dev Forum or Technical Committee group can help advise how
best to do this. They can also serve as a forum to request an extension point.

Developing A New Service

OpenLMIS 3 uses a microservice architecture, so more significant enhancements to the system may be achieved by
creating an additional service and adding it in to your OpenLMIS instance. See the
Template Service [https://github.com/OpenLMIS/openlmis-template-service] for an example to get started.

What’s not accepted

	Code that breaks the build or disables / removes needed tests to pass

	Code that doesn’t pass our Quality Gate - see the Style Guide [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md]
and Sonar [http://sonar.openlmis.org/].

	Code that belongs in an Extension or a New Service

	Code that might break existing implementations - the software can evolve and change, but the
community needs to know about it first!

Git, Branching & Pull Requests

The OpenLMIS community employs several code-management techniques to help develop the software, enable contributions,
discuss & review and pull the community together. The first is that OpenLMIS code is managed using Git and is always
publicly hosted on GitHub [http://github.com/OpenLMIS/]. We encourage everyone working on the codebase to
take advantage of GitHub’s fork and pull-request model to track what’s going on.

For more about version numbers and releasing, see versioningReleasing.md.

The general flow:

	Communicate using JIRA, the wiki, or the developer forum!

	Fork the relevant OpenLMIS project on GitHub

	Branch from the master branch to do your work

	Commit early and often to your branch

	Re-base your branch often from OpenLMIS master branch - keep up to date!

	Issue a Pull Request back to the master branch - explain what you did and keep it brief to speed review!
Mention the JIRA ticket number (e.g., “OLIMS-34”) in the commit and pull request messages to activate the
JIRA/GitHub integration.

While developing your code, be sure you follow the Style Guide [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md]
and keep your contribution specific to doing one thing.

Automated Testing

OpenLMIS 3 includes new patterns and tools [https://github.com/OpenLMIS/openlmis-template-service/blob/master/TESTING.md]
for automated test coverage at all levels. Unit tests continue to be
the foundation of our automated testing strategy, as they were in previous versions of OpenLMIS. Version 3
introduces a new focus on integration tests, component tests, and contract tests (using Cucumber). Test
coverage for unit and integration tests is being tracked automatically using Sonar. Check the status of test
coverage at: http://sonar.openlmis.org/. New code is expected to have test
coverage at least as good as the existing code it is touching.

Continuous Integration, Continuous Deployment (CI/CD) and Demo Systems

Continuous Integration and Deployment are heavily used in OpenLMIS. Jenkins is used to automate builds and
deployments trigged by code commits. The CI/CD process includes running automated tests, generating ERDs,
publishing to Docker Hub, deploying to Test and UAT servers, and more. Furthermore, documentation of these build
pipelines allows any OpenLMIS implementation to clone this configuration and employ CI/CD best practices for
their own extensions or implementations of OpenLMIS.

See the status of all builds online: http://build.openlmis.org/

Learn more about OpenLMIS CI/CD on the wiki: CI/CD Documentation [https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=87195734]

Language Translations & Localized Implementations

OpenLMIS 3 has translation keys and strings built into each component, including the API services and UI
components. The community is encouraging the contribution of translations using Transifex, a tool to manage
the translation process. Because of the micro-service architecture, each component has its own translation file
and its own Transifex project.

See the OpenLMIS Transifex projects [https://www.transifex.com/openlmis/public/] and the
Translations wiki [https://openlmis.atlassian.net/wiki/display/OP/Translations] to get started.

Licensing

OpenLMIS code is licensed under an open source license to enable everyone contributing to the codebase and the
community to benefit collectively. As such all contributions have to be licensed using the OpenLMIS license to be
accepted; no exceptions. Licensing code appropriately is simple:

Modifying existing code in a file

	Add your name or your organization’s name to the license header. e.g. if it reads copyright VillageReach, update it
to copyright VillageReach, <insert name here>

	Update the copyright year to a range. e.g. if it was 2016, update it to read 2016-2017

Adding new code in a new file

	Copy the license file header template, LICENSE-HEADER [https://github.com/OpenLMIS/openlmis-ref-distro/blob/master/LICENSE-HEADER], to the top of the new file.

	Add the year and your name or your organization’s name to the license header. e.g. if it reads Copyright © <INSERT YEAR AND COPYRIGHT HOLDER HERE>, update it to Copyright © 2017 MyOrganization

For complete licensing details be sure to reference the LICENSE file that comes with this project.

Feature Roadmap

The Living Roadmap can be found here [https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap]
The backlog can be found here [https://openlmis.atlassian.net/secure/RapidBoard.jspa?rapidView=46&view=planning.nodetail]

Contributing Documentation

Writing documentation is just as helpful as writing code. See Contribute Documentation [http://docs.openlmis.org/en/latest/developer-docs/contributeDocs.html].

References

	Developer Documentation (ReadTheDocs) - http://docs.openlmis.org/

	Developer Guide (in the wiki) - https://openlmis.atlassian.net/wiki/display/OP/Developer+Guide

	Architecture Overview (v3) - https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=51019809

	API Docs - http://docs.openlmis.org/en/latest/api

	Database ERD Diagrams - http://docs.openlmis.org/en/latest/erd/

	GitHub - https://github.com/OpenLMIS/

	JIRA Issue & Bug Tracking - https://openlmis.atlassian.net/projects/OLMIS/issues

	Wiki - https://openlmis.atlassian.net/wiki/display/OP

	Developer Forum - https://groups.google.com/forum/#!forum/openlmis-dev

	Release Process (using Semantic Versioning) - https://openlmis.atlassian.net/wiki/display/OP/Releases

	OpenLMIS Website - https://openlmis.org

Contribute documentation

This document briefly explains the process of collecting, building and contributing the documentation
to OpenLMIS v3.

Build process

The developer documentation for OpenLMISv3 is scattered across various repositories. Moreover, some
of the artifacts are dynamically generated, based on the current codebase. All that documentation
is collected by a single script. In order to collect a new document to be able to include it in the
developer documentation, it must be placed in the collect-docs.py script. The documentation is built
daily and is triggered by a Jenkins job. It then gets published via ReadTheDocs at http://docs.openlmis.org.
The static documentation files and the build configuration is kept on the openlmis-ref-distro repository, in the
docs directory. It is also possible to rebuild and upload the documentation to Read the Docs manually, by
running the OpenLMIS-documentation Jenkins job.

Contributing

Depending on the part of the documentation that you wish to contribute to, a specific document in one
of the GitHub repositories [https://github.com/OpenLMIS] must be edited. The list below explains where the
particular pieces of the documentation are fetched from, in order to be able to locate and edit them.

Developer docs - Services:
The documentation for each service is taken from the README.md file located on that repository.

Developer docs - Style guide:
This is the code style guide, located in the openlmis-template-service in file STYLE-GUIDE.md.

Developer docs - Testing guide:
This is the document that outlines the strategy and rules for test development. It is located in the
openlmis-template-service in TESTING.md file.

Developer docs - Error Handling:
This document outlines how errors should be managed in Services and how they should be reported through API
responses.

ERD schema:
The ERD schema for certain services is generated by Jenkins. The static file that links to the schema is
located together with the documentation and the schemas itself are built and kept on Jenkins as build
artifacts. The link always points to the ERD schema of the latest, successful build.

UI Styleguide:
The configuration of the styleguide is located on the openlmis-requisition-refUI. The actual Styleguide is
generated by the Jenkins job and uploaded to the gh-pages branch on the same repository.

API documentation:
This contains the link to the Swagger documentation for the API endpoints. It is built by the Jenkins job and
kept as a build artifact, based on the content of the RAML file. The link always points to the API
documentation of the latest successful build.

Conventions

	The License Header

Service Conventions

	OpenLMIS Service Style Guide

	Testing Guide

	Error Handling Conventions

	Service Health

UI Conventions

See the OpenLMIS-UI Styleguide for documentation about how components look and function.

	OpenLMIS-UI Styleguide

	OpenLMIS-UI Coding Conventions

Performance

	Performance Testing

	Performance Data

	Performance Tips

The License Header

Each java or javascript file in the codebase should be annotated with the
proper copyright header. This header should be also applied to singnificant html files.

We use checkstyle to check for it being present in Java files. We also check for
it during our Grunt build in javascript files.

The current copyright header format can be found [here.]
(https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/LICENSE-HEADER)

Replace the year and holder with appropriate holder, for example:

Copyright © 2017 VillageReach

OpenLMIS Service Style Guide

This is a WIP as a style guide for an Independent Service. Clones of this file should reference
this definition.

For the original style guide please see:
https://github.com/OpenLMIS/open-lmis/blob/master/STYLE-GUIDE.md

Java

OpenLMIS has adopted [https://groups.google.com/d/msg/openlmis-dev/CCwBglBFbpk/pY406WbkAAAJ] the
Google Java Styleguide [https://google.github.io/styleguide/javaguide.html]. These checks are
mostly encoded in Checkstyle and should be enforced for all contributions.

Some additional guidance:

	Try to keep the number of packages to a minimum. An Independent Service’s Java code should
generally all be in one package under org.openlmis (e.g. org.openlmis.requisition).

	Sub-packages below that should generally follow layered-architecture conventions; most (if not
all) classes should fit in these four: domain, repository, service, web. To give specific
guidance:
	Things that do not strictly deal with the domain should NOT go in the domain package.

	Serializers/Deserializers of domain classes should go under domain, since they have
knowledge of domain object details.

	DTO classes, belonging to serialization/deserialization for endpoints, should go under web.

	Exception classes should go with the classes that throw the exception.

	We do not want separate sub-packages called exception, dto, serializer for these
purposes.

	When wanting to convert a domain object to/from a DTO, define Exporter/Importer interfaces for
the domain object, and export/import methods in the domain that use the interface methods. Then
create a DTO class that implements the interface methods. (See Right [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/domain/Right.java]
and RightDto [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/dto/RightDto.java]
for details.)
	Additionally, when Exporter/Importer interfaces reference relationships to other domain
objects, their Exporter/Importer interfaces should also be used, not DTOs. (See example [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/domain/Role.java#L198].)

	Even though the no-argument constructor is required by Hibernate for entity objects, do not use
it for object construction; use provided constructors or static factory methods. If one does not
exist, create one using common sense parameters.

RESTful Interface Design & Documentation

Designing and documenting

Note: many of these guidelines come from
Best Practices for Designing a Pragmatic RESTful API [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api].

	Result filtering, sorting and searching should be done by query parameters.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#advanced-queries]

	Return a resource representation after a create/update.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#useful-post-responses]

	Use camelCase (vs. snake_case) for names, since we are using Java and JSON.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#snake-vs-camel]

	Don’t use response envelopes as default (if not using Spring Data REST).
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#envelope]

	Use JSON encoded bodies for create/update.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#json-requests]

	Use a clear and consistent error payload.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#errors]

	Use the HTTP status codes effectively.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status]

	Resource names should be pluralized and consistent. e.g. prefer requisitions, never
requisition.

	A PUT on a single resource (e.g. PUT /facilities/{id}) is not strictly an update; if the
resource does not exist, one should be created using the specified identity (assuming the
identity is a valid UUID).

	Exceptions, being thrown in exceptional circumstances (according to Effective Java by Joshua
Bloch), should return 500-level HTTP codes from REST calls.

	Not all domain objects in the services need to be exposed as REST resources. Care should be
taken to design the endpoints in a way that makes sense for clients. Examples:
	RoleAssignments are managed under the users resource. Clients just care that users have
roles; they do not care about the mapping.

	RequisitionGroupProgramSchedules are managed under the requisitionGroups resource.
Clients just care that requisition groups have schedules (based on program).

	RESTful endpoints that simply wish to return a JSON value (boolean, number, string) should wrap
that value in a JSON object, with the value assigned to the property “result”. (e.g. { "result": true })
	Note: this is to ensure compliance with all JSON parsers, especially ones that adhere to
RFC4627, which do not consider JSON values to be valid JSON. See the discussion
here [http://stackoverflow.com/questions/18419428/what-is-the-minimum-valid-json].

	When giving names to resources in the APIs, if it is a UUID, its name should have a suffix of “Id”
to show that. (e.g. /api/users/{userId}/fulfillmentFacilities has query parameter rightId to get
by right UUID.)

We use RAML (0.8) to document our RESTful APIs, which are then converted into HTML for static API
documentation or Swagger UI for live documentation. Some guidelines for defining APIs in RAML:

	JSON schemas for the RAML should be defined in a separate JSON file, and placed in a schemas
subfolder in relation to the RAML file. These JSON schema files would then be referenced in the
RAML file like this (using role as an example):

- role: !include schemas/role.json

- roleArray: |
 {
 "type": "array",
 "items": { "type": "object", "$ref": "schemas/role.json" }
 }

	(Note: this practice has been established because RAML 0.8 cannot define an array of a JSON
schema for a request/response body (details [http://forums.raml.org/t/set-body-to-be-array-of-defined-schema-objects/1566/3]).
If the project moves to the RAML 1.0 spec and our RAML testing tool [https://github.com/nidi3/raml-tester]
adds support for RAML 1.0, this practice might be revised.)

Pagination

Many of the GET endpoints that return collections should be paginated at the API level. We use
the following guidelines for RESTful JSON pagination:

	Pagination options are done by query paramaters. i.e. use /api/someResources?page=2 and not
/api/someResources/page/2.

	When an endpoint is paginated, and the pagination options are not given, then we return the
full collection. i.e. a single page with every possible instance of that resource. It’s
therefore up to the client to use collection endpoints responsibly and not over-load the backend.

	A paginated resource that has no items returns a single page, with it’s content attribute
as empty.

	Resource’s which only ever return a single identified item are not paginated.

	For Java Service’s the query parameters should be defined by a Pageable [http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/domain/Pageable.html]
and the response should be a Page [http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/domain/Page.html].

Example Request (note that page is zero-based):

GET /api/requisitions/search?page=0&size=5&access_token=<sometoken>

Example Response:

{
 "content": [
 {
 ...
 }
],
 "totalElements": 13,
 "totalPages": 3,
 "last": false,
 "numberOfElements": 5,
 "first": true,
 "sort": null,
 "size": 5,
 "number": 0
}

Postgres Database

For guidelines on how to write schema migrations using Flyway, see Writing Schema Migrations
(Using Flyway).

	Each Independent Service should store its tables in its own schema. The convention is to use
the Service’s name as the schema. e.g. The Requisition Service uses the requisition schema

	Tables, Columns, constraints etc should be all lower case.

	Table names should be pluralized. This is to avoid most used words. e.g. orders instead of
order

	Table names with multiple words should be snake_case.

	Column names with multiple words should be merged together. e.g. getFirstName() would map to
firstname

	Columns of type uuid should end in ‘id’, including foreign keys.

RBAC (Roles & Rights) Naming Conventions

	Names for rights in the system should follow a RESOURCE_ACTION pattern and should be all uppercase,
e.g. REQUISITION_CREATE, or FACILITIES_MANAGE. This is so all of the rights of a certain resource can
be ordered together (REQUISITION_CREATE, REQUISITION_AUTHORIZE, etc.).

i18n (Localization)

Transifex and the Build Process

OpenLMIS v3 uses Transifex for translating message strings so that the product can be used in
multiple languages. The build process of each OpenLMIS service contains a step to sync message
property files with a corresponding Transifex project. Care should be taken when managing keys in
these files and pushing them to Transifex.

	If message keys are added to the property file, they will be added to the Transifex project,
where they are now available to be translated.

	If message keys or strings are modified in the property file, any translations for them will be
lost and have to be re-translated.

	If message keys are removed in the property file, they will be removed from the Transifex
project. If they are re-added later, any translations for them will be lost and have to be
re-translated.

Naming Conventions

These naming conventions will be applicable for the messages property files.

	Keys for the messages property files should follow a hierarchy. However, since there is no
official hierarchy support for property files, keys should follow a naming convention of most to
least significant.

	Key hierarchy should be delimited with a period (.).

	The first portion of the key should be the name of the Independent Service.

	The second portion of the key should indicate the type of message; error for error messages,
message for anything not an error.

	The third and following portions will further describe the key.

	Portions of keys that don’t have hierarchy, e.g. a.b.code.invalidLength and a.b.code.invalidFormat,
should use camelCase.

	Keys should not include hyphens or other punctuation.

Examples:

	requisition.error.product.code.invalid - an alternative could be
requisition.error.productCode.invalid if code is not a sub-section of product.

	requisition.message.requisition.created - requisition successfully created.

	referenceData.error.facility.notFound - facility not found.

Note: UI-related keys (labels, buttons, etc.) are not addressed here, as they would be owned by the
UI, and not the Independent Service.

Testing

See the Testing Guide.

Docker

Everything deployed in the reference distribution needs to be a Docker container. Official OpenLMIS containers are made from their respective containers that are published for all to see on our Docker Hub [https://hub.docker.com/u/openlmis/].

	Dockerfile (Image) best practices [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/]

	Keep Images portable & one-command focused. You should be comfortable publishing these images publicly and openly to the DockerHub.

	Keep Containers ephemeral. You shouldn’t have to worry about throwing one away and starting a new one.

	Utilize docker compose to launch containers as services and map resources

	An OpenLMIS Service should be published in one image found on Docker Hub

	Services and Infrastructure that the OpenLMIS tech committee owns are published under the “openlmis” namespace of docker and on the Docker Hub.

	Avoid Docker Host Mounting [https://docs.docker.com/engine/tutorials/dockervolumes/#/mount-a-host-directory-as-a-data-volume], as this doesn’t work well when deploying to remote hosts (e.g. in CI/CD)

Gradle Build

Pertaining to the build process performed by Gradle.

	Anything generated by the Gradle build process should go under the build folder (nothing
generated should be in the src folder).

Logging

Each Service includes the SLF4J library for generating logging messages. Each Service should be forwarding these log
statements to a remote logging container. The Service’s logging configuration should indicate the name of the service
the logging statement comes from and should be in UTC.

What generally should be logged:

	DEBUG - should be used to provide more information to developers attempting to debug what happened. e.g. bad user input,
constraint violations, etc

	INFO - to log processing progress. If the progress is for a developer to understand what went wrong, use DEBUG. This
tends to be more useful for performance monitoring and remote production debugging after a client’s installation has failed.

Less used:

	FATAL - is reserved for programming errors or system conditions that resulted in the application (Service) terminating. Developers
should not be using this directly, and instead use ERROR.

	ERROR - is reserved for programming conditions or system conditions that would have resulted in the Service terminating, however some
safety oriented code caught the condition and made it safe. This should be reserved for a global Service level handler that will convert all Exceptions into a HTTP 5xx level exception.

Audit Logging

Services use JaVers to log changes made throughout the system. The audits logs for individual resources
should be exposed via endpoints which look as follows:

/api/someResources/{id}/auditLog

Just as with other paginated endpoints, these requests may be filtered via page and size
query paramaters: /api/someResources?page=0&size=10

The returned log may additionally be filtered by author and changedPropertyName query paramaters.
The later specifies that only changes made by a given user should be returned, whereas the later dictates
that only changes related to the named property should be shown.

Each /api/someResources/{id}/auditLog endpoint should return a 404 error if and only if the specified {id} does not exist.
In cases where the resource id exists but lacks an associated audit log, an empty array representing the empty audit should be returned.

Within production services, the response bodies returned by these endpoints should correspond
to the JSON schema defined by auditLogEntryArray within /resources/api-definition.yaml. It is
recognized and accepted that this differs from the schema intended for use by other collections
throughout the system. Specifically, whereas other collections which support paginated requests are
expected to return pagination-related metadata (eg: “totalElements,” “totalPages”) within their
response bodies, the responses proffered by /auditLog endpoints do not retur pagination related data.

Testing Guide

This guide is intended to layout the general automated test strategy for OpenLMIS.

Test Strategy

OpenLMIS, like many software projects, relies on testing to guide development and prevent regressions. To effect this we’ve adopted a standard set of tools to write and execute our tests, and categorize them to understand what types of tests we have, who writes them, when they’re written, run, and where they live.

Types of Tests

The following test categories have been identified for use in OpenLMIS. As illustrated in this great slide deck [http://martinfowler.com/articles/microservice-testing/], we expect the effort/number of tests in each category to reflect the test pyramid [http://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid]:

	Unit

	Integration

	Component

	Contract

	End-to-End

Unit Tests [bookmark: unit]

	Who: written by code-author during implementation

	What: the smallest unit (e.g. one piece of a model’s behavior, a function, etc)

	When: at build time, should be /fast/ and targeted - I can run just a portion of the test suite

	Where: Reside inside a service, next to unit under test. Generally able to access package-private scope

	Why: to test fundamental pieces/functionality, helps guide and document design and refactors, protects against regression

Unit Test Examples

	Every single test should be independent and isolated. Unit test shouldn’t depend on another unit test.

DO NOT:

List<Item> list = new ArrayList<>();

@Test
public void shouldContainOneElementWhenFirstElementisAdded() {
 Item item = new Item();
 list.add(item);
 assertEquals(1, list.size());
}

@Test
public void shouldContainTwoElementsWhenNextElementIsAdded() {
 Item item = new Item();
 list.add(item);
 assertEquals(2, list.size());
}

	One behavior should be tested in just one unit test.

DO NOT:

@Test
public void shouldNotBeAdultAndShouldNotBeAbleToRunForPresidentWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);

 boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident(age)
 assertFalse(isAbleToRunForPresident);
}

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
}

@Test
public void shouldNotBeAbleToRunForPresidentWhenAgeBelow18() {
 int age = 17;
 boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident(age)
 assertFalse(isAbleToRunForPresident);
}

	Every unit test should have at least one assertion.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
}

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
}

	Don’t make unnecessary assertions. Don’t assert mocked behavior, avoid assertions that check the exact same thing as another unit test.

DO NOT:

 @Test
 public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 assertEquals(17, age);

 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
 }

	Unit test has to be independent from external resources (i.e. don’t connect with databases or servers)

DO NOT:

 @Test
 public void shouldNotBeAdultWhenAgeBelow18() {
 String uri = String.format("http://127.0.0.1:8080/age/", HOST, PORT);
 HttpPost httpPost = new HttpPost(uri);
 HttpResponse response = getHttpClient().execute(httpPost);
 assertEquals(HttpStatus.ORDINAL_200_OK, response.getStatusLine().getStatusCode());
 }

	Unit test shouldn’t test Spring Contexts. Integration tests are better for this purpose.

DO NOT:

 @RunWith(SpringJUnit4ClassRunner.class)
 @ContextConfiguration(locations = {"/services-test-config.xml"})
 public class MyServiceTest implements ApplicationContextAware
 {

 @Autowired
 MyService service;
 ...
 @Override
 public void setApplicationContext(ApplicationContext context) throws BeansException
 {
 // something with the context here
 }
 }

	Test method name should clearly indicate what is being tested and what is the expected output and condition. The “should - when” pattern should be used in the name.

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 ...
}

DO NOT:

@Test
public void firstTest() {
 ...
}

@Test
public void testIsNotAdult() {
 ...
}

	Unit test should be repeatable - each run should yield the same result.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = randomGenerator.nextInt(100);
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
}

	You should remember about intializing and cleaning each global state between test runs.

DO:

@Mock
private AgeService ageService;
private age;

@Before
public void init() {
 age = 18;
 when(ageService.isAdult(age)).thenReturn(true);
}

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 boolean isAdult = ageService.isAdult(age);
 assertTrue(isAdult);
}

	Test should run fast. When we have hundreds of tests we just don’t want to wait several minutes till all tests pass.

DO NOT:

 @Test
 public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 sleep(1000);
 boolean isAdult = ageService.isAdult(age);
 sleep(1000);
 assertFalse(isAdult);
 }

Integration Tests [bookmark: integration]

	Who: Code author during implementation

	What: Test basic operation of a service to persistent storage or a service to another service. When another service is required, a test-double should be used, not the actual service.

	When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from build to not slow development. Will be run in CI on every change.

	Where: Reside inside a service, separated from other types of tests/code.

	Why: Ensures that the basic pathways to a service’s external run-time dependancies work. e.g. that a db schema supports the ORM, or a non-responsive service call is gracefully handled.

For testing controllers, they are divided up into unit and integration tests. The controller unit tests will be testing the logic in the controller, while the integration tests will be mostly testing serialization/deserialization (and therefore do not need to test all code paths). In both cases, the underlying services and repositories are mocked.

Component Tests [bookmark: component]

	Who: Code author during implementation

	What: Test more complex operations in a service. When another service is required, a test-double should be used, not the actual service.

	When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from build to not slow development. Will be run in CI on every change.

	Where: Reside inside a service, separated from other types of tests/code.

	Why: Tests interactions between components in a service are working as expected.

These are not integration tests, which strictly test the integration between the service and an external dependency. These test the interactions between components in a service are working correctly. While integration tests just test the basic pathways are working, component tests verify that, based on input, the output matches what is expected.

These are not contract tests, which are more oriented towards business requirements, but are more technical in nature. The contract tests will make certain assumptions about components, and these tests make sure those assumptions are tested.

Contract Tests [bookmark: contract]

	Who: Code author during implementation, with input from BA/QA.

	What: Enforces contracts between and to services.

	When: Ran in CI.

	Where: Reside inside separate repository: openlmis-contract-tests [http://github.com/openlmis/openlmis-contract-tests].

	Why: Tests multiple services working together, testing contracts that a Service both provides as well as the requirements a dependant has.

The main difference between contract and integration tests:
In contract tests, all the services under test are real, meaning that they will be processing requests and sending responses.
Test doubles, mocking, stubbing should not be a part of contract tests.

Refer to this doc [https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/README.md] for examples of how to write contract tests.

End-to-End Tests [bookmark: e2e]

	Who: QA / developer with input from BA.

	What: Typical/core business scenarios.

	When: Ran in CI.

	Where: Resides in seperate repository.

	Why: Ensures all the pieces are working together to carry-out a business scenario. Helps ensure end-users can achieve their goals.

Testing services dependent on external APIs

OpenLMIS is using WireMock for mocking web services. An example integration test can be found here:
https://github.com/OpenLMIS/openlmis-example/blob/master/src/test/java/org/openlmis/example/WeatherServiceTest.java

The stub mappings which are served by WireMock’s HTTP server are placed under src/test/resources/mappings and _src/test/resources/__files_
For instructions on how to create them please refer to http://wiremock.org/record-playback.html

Testing Tools

	spring-boot-starter-test
	Spring Boot Test

	JUnit

	Mockito

	Hamcrest

	WireMock [http://wiremock.org]

	REST Assured [http://rest-assured.io]

	raml-tester [https://github.com/nidi3/raml-tester]

Error Handling Conventions

OpenLMIS would like to follow error handling best practices, this document covers the
conventions we’d like to see followed in the various OpenLMIS components.

Java and Spring

The Java community has a long-standing debate about the proper use of Exceptions. This section
attempts to be pragmatic about the use of exceptions - especially understanding the Spring
community’s exception handling techniques.

Exceptions in Java are broken down into two categories: those that are recovearable (checked) and
those where client code can in no-way recover from the Exception (runtime). OpenLMIS strongly
discourages the use of checked exceptions, and the following section discusses what is encouraged
and why checked exceptions should be avoided.

A pattern for normal error-handling

Normal errors for the purpose of this document are things like input validation or other business
logic constraints. There are a number of sources that make the claim that these types of errors
are not exceptional (i.e. bad user input is to be expected normally) and therefore Java
Exception’s shouldn’t be used. While that’s generally very good advice, we will be using
runtime exceptions (not checked exceptions) as long as they follow the best practices laid out here.

The reasoning behind this approach is two-fold:

	Runtime exceptions are used when client code can’t recover from their use. Typically
this has been used for the class of programming errors that indicate that the software encountered a
completely unexpected programming error for which it should immediately terminate. We
expand this definition to include user-input validation and business logic constraints
for which further user-action is required. In that case the code can’t recover - it has to
receive something else before it could ever proceed, and while we don’t want the program to
terminate, we do want the current execution to cease so that it may pop back to a Controller level
component that will convert these exceptions into the relevant (non-500) HTTP response.

	Using Runtime exceptions implies that we never write code that catches them.
We will use Spring’s @ControllerAdvice which will catch them for us, but our code should have
less “clutter” as it’ll be largely devoid of routine error-validation handling.

Effectively using this pattern requires the following rules:

	The Exception type (class) that’s thrown will map one-to-one with an HTTP Status code that we
want to return, and this mapping will be true across the Service. e.g. a
throw ValidationException will always result in the HTTP Status code 400 being returned with the
body containing a “nice message” (and not a stacktrace).

	The exception thrown is a sub-type of java.lang.RuntimeException.

	Client code to a method that returns RuntimeException’s should never try to handle the
exception. i.e. it should not try {...} catch ...

	The only place that these RuntimeExceptions are handled is by a class annotated
@ControllerAdvice that lives along-side all of the Controllers.

	If the client code needs to report multiple errors (e.g. multiple issues in validating user
input), then that collection of errors needs to be grouped before the exception is thrown.

	A Handler should never be taking one of our exception types, and returning a HTTP 500 level
status. This class is reserved specifically to indicate that a programming error has occurred.Reserving this directly allows for easier searching of the logs for program-crashing type of errors.

	Handler’s should log these exceptions at the DEBUG level. A lower-level such as TRACE could be
used, however others such as ERROR, INFO, FATAL, WARN, etc should not.

Example

The exception

public class ValidationException extends RuntimeException { ... }

A controller which uses the exception

@Controller
public class WorkflowController {

 @RequestMapping(...)
 public WorkflowDraft doSomeWorkflow() {
 ...

 if (someError)
 throw new ValidationException(...);

 ...

 return new WorkflowDraft(...);
 }
}

The exception handler that’s called by Spring should the WorkflowController throw
ValidationException.

@ControllerAdvice
public class WorkflowExceptionHandler {
 @ExceptionHandler(ValidationException.class)
 @ResponseStatus(HttpStatus.BAD_REQUEST)
 private Message.LocalizedMessage handleValidationException(ValidationException ve) {
 ...
 logger.debug(ve);
 return ve.getTheLocalizedMessage();
 }
}

Exceptions - what we don’t want

Lets look at a simple example that is indicative of the sort of code we’ve been writing using
exceptions. This example consists of a web-endpoint that returns a setting for a given key, which
hands off the work to an application service layer that uses the key provided to find the given
setting.

A controller (HTTP end-point) that is asked to return some setting for a given “key”

@RequestMapping(value = "/settings/{key}", method = RequestMethod.GET)
public ResponseEntity<?> getByKey(@PathVariable(value = "key") String key) {
 try {
 ConfigurationSetting setting = configurationSettingService.getByKey(key);
 return new ResponseEntity<>(setting, HttpStatus.OK);
 } catch (ConfigurationSettingException ex) {
 return new ResponseEntity(HttpStatus.NOT_FOUND);
 }
}

The service logic that finds the key and returns it (i.e. configurationSettingService above):

public ConfigurationSetting getByKey(String key) throws ConfigurationSettingException {
 ConfigurationSetting setting = configurationSettingRepository.findOne(key);
 if (setting == null) {
 throw new ConfigurationSettingException("Configuration setting '" + key + "' not found");
 }
 return setting;
}

In this example we see that the expected end-point behavior is to either return the setting asked
for and an HTTP 200 (success), or to respond with HTTP 404 - the setting was not found.

This usage of an Exception here is not what we want for a few reasons:

	The Controller directly handles the exception - it has a try-catch block. It should only
handle the successful path which is when the exception isn’t thrown. We should have a Handler
which is @ControllerAdvice.

	The exception ConfigurationSettingException doesn’t add anything - either semantically or
functionally. We know that this type of error isn’t that there’s some type of Configuration
Setting problem, but rather that something wasn’t found. This could more generically and more
accurately be named a NotFoundException. It conveys the semantics of the error and one single
Handler method for the entire Spring application could handle all NotFoundExceptions by
returning a HTTP 404.

	It’s worth noting that this type of null return is handled well in Java 8’s Optional. We would
still throw an exception at the Controller so that the Handler could handle the error, however
an author of middle-ware code should be aware that they could use Optional instead of throwing
an exception on a null immediately. This would be most useful if many errors could occur - i.e.
in processing a stream.

	This code is flagged by static analysis
tools [http://sonar.openlmis.org/issues/search#issues=AVc18ErL0QRqkcp89olY] with the error that
this exception should be “Either log or re-throw this exception”. A lazy programmer might
“correct” this by logging the exception, however this would result in the log being permeated
with noise from bad user input - which should be avoided.

How the API responds with validation error messages

What are Validation Error Messages?

In OpenLMIS APIs, validation errors can happen on PUT, POST, DELETE or even GET. When validation or
permissions are not accepted by the API, invalid requests should respond with a helpful validation
error message. This response has an HTTP response body with a simple JSON object that wraps the
message. Different clients may use this message as they wish, and may display it to end-users.

The Goal: We want the APIs to respond with validation error messages in a standard way. This will
allow the APIs and the UI components to all be coded and tested against one standard.

When does this pattern apply?

When does this “validation error message” pattern apply? We want to apply this pattern for all of
the error situations where we return a HTTP response body with an error message. For more details
about which HTTP status codes this aligns with, see the ‘HTTP Status Codes’ section below.

What do we return on Success?

In general, success responses should not include a validation message of the type specified here.
This will eliminate the practice which was done in OpenLMIS v2, EG:

PUT /requisitions/75/save.json
Response: HTTP 200 OK
Body: {"success":"R&R saved successfully!"}

On success of a PUT or POST, the API should usually return the updated resource with a HTTP 200
OK or HTTP 201 Created response code. On DELETE, if there is nothing appropriate to return, then
an empty response body is appropriate with a HTTP 204 No Content response code.

HTTP Status Codes

Success is generally a 2xx HTTP status code and we don’t return validation error messages on
success. Generally, validation errors are 4xx HTTP status codes (client errors). Also, we don’t
return these validation error messages for 5xx HTTP status codes (server or network errors).
We do not address 5xx errors because OpenLMIS software does not always have control over what the
stack returns for 5xx responses (those could come from NGINX or even a load balancer).

Examples below show appropriate use of HTTP 403 and 422 status codes with validation error messages.
The OpenLMIS Service Style Guide [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md]
includes further guidance on HTTP Status Codes that comes from
Best Practices for Designing a Pragmatic RESTful API [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status].

Example: Permissions/RBAC

The API does a lot of permission checks in case a user tries to make a request without the needed
permissions. For example, a user may try to initiate a requisition at a facility where they don’t
have permissions. That should generate a HTTP 403 Forbidden response with a JSON body like this:

{
 "message" : "Action prohibited because user does not have permission at the facility",
 "messageKey" : "requisition.error.prohibited.noFacilityPermission"
}

When creating these error validation messages, we encourage developers to avoid repeating code.
It may be appropriate to write a helper class that generates these JSON validation error responses
with a simple constructor.

We also don’t want developers to spend lots of time authoring wordy messages. It’s best to keep the
messages short, clear and simple.

Translation/i18n

Message keys are used for translations. Keys should follow our
Style Guide i18n Naming Conventions [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md#i18n-naming-conventions].

The “messageKey” is the key into a property translation file such as a
.properties file [http://docs.transifex.com/formats/java-properties/] maintained using Transifex
or a similar tool.

The “messageKey” will be used with translation files in order to conduct translation, which we
allow and support on the server-side and/or the client-side. Any OpenLMIS instance may configure
translation to happen in its services or its clients.

A service will use the “messageKey” to translate responses into a different language server-side in
order to respond in the language of choice for that OpenLMIS implementation instance. And/or a
client/consumer may use the “messageKey” to translate responses into a language of choice.

The source code where a validation error is handled should have the “messageKey” only. The source
code should not have hard-coded message strings in English or any language.

Messages with Placeholders for Translation

Placeholders allow messages to be dynamic.
For example, “Action prohibited because user {0} does not have permission {1} at facility {2}”.

The Transifex tool appears to support different types of placeholders, such as {0} or %s and %d.
In OpenLMIS v2, the MessageService (called the Notification Service in v3) uses placeholders to
make email messages translate-able. For an example, see the
StatusChangeEventService [https://github.com/OpenLMIS/open-lmis/blob/master/modules/core/src/main/java/org/openlmis/core/service/StatusChangeEventService.java#L62].

Future: Arrays of Messages

In the future, we may extend these guidelines to support an array of multiple messages.

Future: Identifying Fields Where Validation Was Not Accepted

In the future, it may also be helpful to extend this to allow the error messages to be associated
with a specific piece of data. For example, if a Requisition Validation finds that line item
quantities do not add up correctly, it could provide an error message tied to a specific product
(line item) and field. Often this kind of validation may be done by the client (such as in the
AngularJS UI app), and the client can immediately let the end-user know about a specific field
with a validation error.

Future: Including Stack-Traces in Development Mode

In the future, it may be useful to be able to launch the entire application in a debug mode.In this mode errors returned via the API might include a stacktrace or other context normally
reserved for the server log. This would be a non-default mode that developers could use to
more easily develop the application.

Proposed RAML

schemas:
 - errorResponse: |
 { "type": "object",
 "$schema": "http://json-schema.org/draft-03/schema",
 "title": "ErrorResponse",
 "description": "Error response",
 "properties": {
 "message": { "type": "string", "required": true, "title": "error message" },
 "messageKey": { "type": "string", "required": true, "title": "key for translations" }
 }
 }

/requisitions:
 /{id}:
 put:
 description: Save a requisition with its line items
 responses:
 403:
 422:
 body:
 application/json:
 schema: errorResponse

Service Health

In OpenLMIS’ Service Architecture it’s important that a Service be able to tell our Service
Registry (Consul [https://www.consul.io/]) when it’s ready to accept new work and when it’s not. If the service doesn’t
inform our Service Registry accurately, then new requests for work might be routed to that service
from the reverse proxy (Nginx [https://nginx.org/]) which won’t be fulfilled.

Spring Boot Actuator

In our Spring Boot based services there is a very handy project named Spring Boot Actuator [https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html] that
once enabled turns on a number of useful production features. One of these is the /health
endpoint.

To make use of this in OpenLMIS v3 architecture we will:

	Add Spring Boot Actuator to our Service.

	Enable the /health endpoint.

	Register this endpoint with Consul as a health check.

Adding Spring Boot Actuator to our Service

As simple as adding it as a dependency:

build.gradle:

dependencies {
 ...
 compile "org.springframework.boot:spring-boot-starter-actuator"
 ...
}

Enabling the /health endpoint

May be done through our default configuration:

application.properties:

endpoints.enabled=false
endpoints.health.enabled=true

Note that we first disable all of the endpoints that Spring Boot Actuator adds to be conservative,
we don’t need them (yet). Next we ensure that the /health endpoint is enabled.

Registering /health with Consul (Service Registry)

First we must allow non-authenticated access to this resource:

ResourceServerSercurityConfiguration.java:

.antMatchers(
 "/referencedata",
 "/health",
 "/referencedata/docs/**"
).permitAll()

Next we need to tell Consul that this endpoint should be used for a health check:

config.json:

"service": {
 "Name": "referencedata",
 "Port": 8080,
 "Tags": ["openlmis-service"],
 "check": {
 "interval": "10s",
 "http": "http://HOST:PORT/health"
 }
},

This Consul check directive [https://www.consul.io/docs/agent/checks.html] will be registered with Consul, letting Consul know that every 10
seconds it should try this /health endpoint and use the HTTP status to determine the
Service’s availability.

And finally we’ll need to ensure that the registration script replaces HOST and
PORT with the correct values when it sends this to Consul:

consul/registration.js:

function registerService() {
 service.ID = generateServiceId(service.Name);

 if (service.check) {
 var checkHttp = service.check.http;
 checkHttp = checkHttp.replace("HOST", service.Address);
 checkHttp = checkHttp.replace("PORT", service.Port);
 service.check.http = checkHttp;
 }

 ...
}

This commit has the change [https://github.com/OpenLMIS/openlmis-referencedata/commit/3bcd75f24dbe60702083771d2c947c713725e15e#diff-426e2baf3a14662065832f6c45702da6].

At this point you might be wondering why we left this endpoint unsecured and not mapped to some
name which is service specific. After all, every running service will use /health. What we
did not do however is make this endpoint routable by adding it to our RAML or registering it as a
path for Consul. This means that our reverse proxy will never try to take a HTTP request to
/health and route it to any particular service. Only Consul will know of this endpoint
and try to access it through the network at the host and port which the Service registered itself
with. No client to our reverse proxy will be able to directly access a Service’s health endpoint.

Health and HTTP Status

The Consul check directive [https://www.consul.io/docs/agent/checks.html] is looking for the following HTTP statuses:

	2xx: Everything is okay, send more requests

	429: Warning, too many requests. There is a problem, but still send more requests.

	Anything else: failed, not available for servicing requests

The /health endpoint naturally fulfills HTTP 200 when the Service is ready and also
has the basics of how to report when a service is down (e.g. if the database connection is
down the endpoint will return a 5xx level error). This endpoint can do more however.
Spring Boot Actuator Health Information [https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-health] has more details about how custom code can be written
that modifies the health status returned. This could be especially useful if a Service has a
dependancy on another system (e.g. integration with ODK or DHIS2), another Service (e.g. Requisition
needs Reference Data) or another piece of infrastructure (e.g. sending emails, SMS, etc).

OpenLMIS-UI Styleguide

Overview

This is the styleguide for the OpenLMIS-UI, and establishes HTML patterns that should be followed to create pages and components in the OpenLMIS-UI. This documentation is generated from the source code that creates the OpenLMIS-UI.

General Rules

The following are general stylistic rules for the OpenLMIS-UI, which implementers and developers should keep in mind while crafting content.

Titles

Titles include page titles, report titles, headings within a page (H2, H3, etc), and the subject line of email notifcations. Links in the main navigation menu are generally page titles. Most other strings that appear on-screen are Labels, Buttons or others described further below.

Titles should be written so they describe a specific object and state. If there is a state that is being applied to the object in a title, the state is first in the present tense. The first letter of each word in a title should be capitalized, except for the articles of the sentence. Titles do not contain punctuation.

See APA article about title case [http://blog.apastyle.org/apastyle/2012/03/title-case-and-sentence-case-capitalization-in-apa-style.html] for more guidance.

Examples
Do: “Initiate Requisition”
Do Not: “REQUISITION - INITIATE”

Labels

Labels are generally used in form elements to describe the content a user should input. Labels have the first letter of the first word capitalized, and should not have any punctuation such as a colon.

Labels also include table column headers and dividers for sections or categories.

Note: Colons should be added using CSS pseudo-selector, if an implementation requires labels to be formatted with a colon. As a community, we feel that less allows for easier customization.

Example
Do: “First name”
Do Not: “First Name:”

Buttons

Buttons should be used to refer to a user taking an action on an object, meaning there should always be a specific verb followed by a subject. Buttons have the first letter of each word capitalized and don’t have any punctuation.

Example
Do: “Search Facilities”
Do Not: “SEARCH”

Messages

Messages represent a response from the system to a user. These strings should be written as a command, where the first word is the action that has happened. The first letter of a message is capitalized, but there is no punctuation.

Example
Do: “Failed to save user profile”
Do Not: “Saving user profile failed.”

Confirmations

Confirmations are messages shown to the user to confirm that they actually want to take an action. These messages should address the user directly and be phrased as a single sentence.

Example
Do: “Are you sure you want to submit this requisition?”
Do Not: “Submitting requisition, are you sure? Please confirm.”

Instructions

Instructions might be placed at the top of a form or after a confirmation to clarify the action a user is taking. These should be written as full paragraphs.

Example
Do: “Authorize this requisition to send the requisition to the approval workflow.”
Do Not: “Authorize requisition — send to approval workflow”

OpenLMIS-UI Coding Conventions

This document describes the desired formatting to be used withing the OpenLMIS-UI repositories, many of the conventions are adapted from John Papa’s Angular V1 styleguide [https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md] and SMACSS by Jonathan Snook. [https://smacss.com/]

General

The following conventions should be applied to all sections of UI development:

	All intentation should be 4 spaces

	Legacy code should be refactored to meet coding conventions

	No thrid party libraries should be included in a OpenLMIS-UI repository

File Structure

All file types should be organized together within the src directory according to functionality, not file type — the goal is to keep related files together.

Use the following conventions:

	File names are lowercase and dash-seperated

	Files in a directory should be as flat as possible (avoid sub-directories)

	If there are more than 12 files in a directory, try to divide files into subdirectories based on functional area

Each file type section below has specifics on their naming conventions

HTML Markup Guidelines

Less markup is better markup, and semantic markup is the best.

This means we want to avoid creating layout specific markup that defines elements such as columns or icons. Non-semantic markup can be replicated by using CSS to create columns or icons. In some cases a layout might not be possible without CSS styles that are not supported across all of our supported browsers, which is perfectly acceptiable.

Here is a common pattern for HTML that you will see used in frameworks like Twitter’s Bootstrap (which we also use)

<li class="row">
 <div class="col-md-9">
 Item Name
 </div>
 <div class="col-md-3">

 <i class="icon icon-trash"></i>
 Delete

 </div>

<div class="clearfix"></div>

The above markup should be simplified to:

 Item Name
 <button class="trash">Delete</button>

This gives us simpler markup, that could be restyled and reused depending on the context that the HTML section is inserted into. We can recreate the styles applied to the markup with CSS such as:

	A ::before pseudo class to display an icon in the button

	Using float and width properties to correctly display the button

	A ::after pseudo class can replace any ‘clearfix’ element (which shouldn’t exist in our code)

See the UI-Styleguide for examples of how specific elements and components should should be constructed and used.

HTML Form Markup

A goal for the OpenLMIS-UI is to keep busniess logic separated from styling, which allows for a more testable and extenable platform. Creating data entry forms is generally where logic and styling get tangled together because of the need to show error responses and validation in meaningful ways. AngularJS has built-in features [https://docs.angularjs.org/guide/forms] to help foster this type of separation, and OpenLMIS-UI extends AngularJS’s features to a basic set of error and validation featrues.

The goal here is to attempt to keep developers and other implementers from creating their own form submission and validation - which is too easy in Javascript frameworks like AngularJS.

An ideal form in the OpenLMIS-UI would look like this:

<form name="exampleForm" ng-submit="doTheThing()">
 <label for="exampleInput">Example</label>
 <input id="exampleInput" name="exampleInput" ng-model="example" required />
 <input type="submit" value="Do Thing" />
</form>

This is a good form because:

	There is a name attribute on the form element, which exposes the FormController

	The input has a name attribute, which allow for validation passed to the FormController to be passed back to the correct input

	ng-submit is used rather than ng-click on a button

Naming Convention

In general we follow the John-Papa naming conventions, [https://github.com/johnpapa/angular-styleguide/tree/master/a1#naming] later sections go into specifics about how to name a specific file type, while this section focuses on general naming and file structure.

Generally, all file names should use the following format specific-name.file-type.ext where:

	specific-name is a dash-separated name for specific file-type

	file-type is the type of object that is being added (ie ‘controller’, ‘service’, or ‘layout’)

	ext is the extention of the file (ie ‘.js’, ‘.scss’)

Folder structure should aim to follow the LIFT principal [https://github.com/johnpapa/angular-styleguide/tree/master/a1#application-structure-lift-principle] as closely as possible, with a couple extra notes:

	There should only be one *.module.js file per directory hiearchy

	Only consider creating a sub-directory if file names are long and repatitive, such that a sub-directory would improve meaning

SASS & CSS Formatting Guidelines

General SASS and CSS conventions:

	Only enter color values in a variables file

	Only enter pixel or point values in a variables file

	Variable names should be lowercase and use dashes instead of spaces (ie: $sample-variable)

	Avoid class names in favor of child element selectors where ever possible

	Files should be less than 200 lines long

	CSS class names should be lowercase and use dashes instead of spaces

SMACSS

The CSS styles should reflect the SMACSS CSS methodology, which has 3 main sections — base, layout, and module. SMACSS has other sections and tennants, which are useful, but are not reflected in the OpenLMIS-UI coding conventions.

Base

CSS styles applied directly to elements to create styles that are the same throughout the application.

Layout

CSS styles that are related primarly to layout in a page — think position and margin, not color and padding — these styles should never be mixed with base styles (responsive CSS should only be implemented in layout).

Module

This is a css class that will modify base and layout styles for an element and it’s sub-elements.

SASS File-Types

Since SASS pre-processes CSS, there are 3 SCSS file types to be aware of which are processed in a specific order to make sure the build process works correctly.

Variables

A variable file is either named ‘variables.scss’ or matches ‘*.variables.scss’

Varriables files are the first loaded file type and include any variables that will be used through out the application — There should be as few of these files as possible.

The contents of a varriables file should only include SASS variables, and output no CSS at anypoint.

There is no assumed order in which varriables files will be included, which means:

	Varriable files shouldn’t have overlapping varriables

	Implement SASS’s variable default (!default) [http://sass-lang.com/documentation/file.SASS_REFERENCE.html#variable_defaults_]

Mixins

A mixin file matches the following pattern *.mixin.scss

Mixins in SASS are reusable functions, which are loaded second in our build process so they can use global variables and be used in any other SCSS file.

There should only be one mixin per file, and the file name should match the function’s name, ie: ‘simple-function.mixin.scss’

All Other SCSS and CSS Files

All files that match ‘.scss’ or ‘.css’ are loaded at the same time in the build process. This means that no single file can easily overwrite another files CSS styles unless the style is more specific or uses !imporant — This creates the following conventions:

	Keep CSS selectors as general as possible (to allow others to be more specific)

	Avoid using !important

To keep file sizes small, consider breaking up files according to SMACSS guidelines by adding the type of classes in the file before .scss or .css (ie: navigation.layout.scss)

Javascript Formatting Guidelines

General conventions:

	All code should be within an immedately invoked scope [https://github.com/johnpapa/angular-styleguide/tree/master/a1#iife]

	ONLY ONE OBJECT PER FILE

	Variable and function names should be written in camelCase

	All Angular object names should be written in CamelCase

Documentation

To document the OpenLMIS-UI, we are using ngDocs [https://github.com/angular/angular.js/wiki/Writing-AngularJS-Documentation] built with grunt-ngdocs. [https://www.npmjs.com/package/grunt-ngdocs] See individual object descriptions for specifics and examples of how to document that object type.

General rules

	any object’s exposed methods or variables must be documented with ngDoc

	@ngdoc annotation specifies the type of thing being documented

	as ‘Type’ in documentation we should use:

	Promise

	Number

	String

	Boolean

	Object

	Event

	Array

	Scope

	in some cases is allowed to use other types i.e. class names like Requisition

	all description blocks should be sentence based, all of sentences should start with uppercase letter and end with ‘.’

	before and after description block (if there is more content) there should be an empty line

	all docs should be right above the declaration of method/property/component

	when writing param/return section please keep all parts(type, parameter name, description) start at the same column as it is shown in method/property examples below

	please keep the order of all parameters as it is in examples below

General Object Documentation

Regardless of the actual component’s type, it should have ‘@ngdoc service’ annotation at the start, unless the specific object documentation says otherwise. There are three annotations that must be present:

	ngdoc definition

	component name

	and description

/**
 * @ngdoc service
 * @name module-name.componentName
 *
 * @description
 * Component description.
 */

Methods

Methods for all components should have parameters like in the following example:

/**
 * @ngdoc method
 * @methodOf module-name.componentName
 * @name methodName
 *
 * @description
 * Method description.
 *
 * @param {Type} paramsName1 param1 description
 * @param {Type} paramsName2 (optional) param2 description
 * @return {Type} returned object description
 */

Parameters should only be present when method takes any. The same rule applies to return annotation.
If the parameter is not required by method, it should have “(optional)” prefix in the description.

Properties

Properties should be documented in components when they are exposed, i.e. controllers properties declared in ‘vm’.
Properties should have parameters like in the following example:

/**
 * @ngdoc property
 * @propertyOf module-name.componentName
 * @name propertyName
 * @type {Type}
 *
 * @description
 * Property description.
 */

Unit Testing Guidelines

A unit tests has 3 goals that it should accomplish to test a javascript object:

	Checks success, error, and edge cases

	Tests as few objects as possible

	Demonstrates how an object should be used

With those 3 goals in mind, its important to realize that the variety of AngularJS object types means that the same approact won’t work for each and every object. Since the OpenLMIS-UI coding conventions layout patterns for different types of AngularJS objects, it’s also possible to illustrate how to unit test objects that follow those conventions.

Check out AngularJS’s unit testing guide [https://docs.angularjs.org/guide/unit-testing], its well written and many of out tests follow their styles.

Here are some general rules to keep in mind while writing any unit tests:

	Keep beforeEach statements short and to the point, which will help other’s read your statements

	Understand how to use Spies in Jasmine, [https://jasmine.github.io/1.3/introduction.html#section-Spies] they can help isolate objects and provide test cases

Angular V1 Object Guidelines

AngularJS has many different object types — here are the following types the OpenLMIS-UI primarily uses. If there is a need for object types not documented, please refer to the John Papa Angular V1 styleguide.

Modules

Modules in angular should describe and bind together a small unit of functionality. The OpenLMIS-UI build process should construct larger module units from theses small units.

Documentation

Docs for modules must contain the module name and description. This should be thought of as an overview for the other obects within the module, and where appropriate gives an overview of how the modules fit together.

/**
 * @module module-name
 *
 * @description
 * Some module description.
 */

Replaced Values

@@ should set own default values

Constants

Constants are Javascript variables that won’t change but need to be resued between multiple objects within an Angular module. Using constants is important because it becomes possible to track an objects dependencies, rather than use variables set on the global scope.

It’s also useful to wrap 3rd party objects and libraries [https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#vendor-globals] (like jQuery or bootbox) as an Angular constant. This is useful because the dependency is declared on the object. Another useful feature is that if the library or object isn’t included, Angualr will throw a single verbose error message.

Add rule about when its ok to add a group of constants – if a grouping of values, use a plural name

Conventions:

	All constant variable names should be upper case and use underscores instead of spaces (ie VARIABLE_NAME)

	If a constant is only relivant to a single Angular object, set it as a variable inside the scope, not as an Angular constant

	If the constant value needs to change depending on build variables, format the value like @@VARIABLE_VALUE, and which should be replaced by the grunt build process if there is a matching value

	Wrap 3rd party services as constants, if are not already registered with Angular

Service

John Papa refers to services as Singletons, [https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#services] which means they should only be used for application information that has a single instance. Examples of this would include the current user, the application’s connection state, or the current library of localization messages.

Conventions

	Services should always return an object

	Services shouldn’t have their state changed through properties, only method calls

Naming Convention

nameOfServiceService

Always lowercase camelCase the name of the object. Append ‘Service’ to the end of the service name so developers will know the object is a service, and changes will be persisted to other controllers.

Unit Testing Conventions

	Keep $httpBackend mock statements close to the specific places they are used (unless the statement is reusable)

	Use Jasmine’s spyOn method to mock the methods of other objects that are used

	In some cases mocking an entire AngularJS Service, or a constant, will be required. This is possible by using AngularJS’s $provide object [https://docs.angularjs.org/api/auto/service/$provide] within a beforeEach block. This would look like

beforeEach(module($provide){
 // mock out a tape recorder service, which is used else where
 tape = jasmine.createSpyObj('tape', ['play', 'pause', 'stop', 'rewind']);

 // overwrite an existing service
 $provide.service('TapeRecorderService', function(){
 return tape;
 });
});

Factory

Factories should be the most used Angualr object type in any application. John Papa insists that factories serve a single purpose, [https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#factories] and should be extended by variabled they are called with.

This means that factories should generally return a function that will return an object or set of objects that can be manipulated. It is common for a factory to include methods for interacting with a server, but this isn’t nessicarry.

Should be used with UI-Router resolves, and get additional arguments

Naming Convention

specificNameFactory

Factories should always be named lowercase camelCase. To avoid confussion between created objects and factories, all factories should have the word’Factory’ appended to the end (this disagrees with John-Papa style).

Example

angular.module('openlmis-sample')
 .factory('sampleFactory', sample);

sample.$inject = [];
function sample(){
 var savedContext;

 return {
 method: method,
 otherMethod: otherMethod
 }
}

Unit Testing Conventions
Test a factory much like you would test a service, except be sure to:

	Declare a new factory at the start of every test

	Exercise the producted object, not just the callback function

Javascript Class

Pure javascript classes should only be used to ease the manipulation of data, but unlike factories, these object shouldn’t create HTTP connections, and only focus on a single object.

Javascript classes should be injected and used within factories and some services services that have complex logic. Modules should be able to extend javascript classes by prototypical inheritance.

Helps with code reusability

Requisition/LineItem is good example

Naming Conventions

SampleName

Classes should be uppercase CamelCased, which represents that they are a class and need to be instantiated like an object (ie new SampleName()).

Controller

Controllers are all about connecting data and logic from Factories and Services to HTML Views. An ideal controller won’t do much more than this, and will be as ‘thin’ as possible.

Controllers are typically specific in context, so as a rule controllers should never be reused. A controller can be linked to a HTML form, which might be reused in multiple contexts — but that controller most likely wouldn’t be applicable in other places.

It is also worth noting that John Papa insists that controllers don’t directly manipulate properties [https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#controllers] in $scope, but rather the ControllerAs [https://docs.angularjs.org/api/ng/directive/ngController] syntax should be used which injects the controller into a HTML block’s context. The main rationale is that it makes the $scope variables less cluttered, and makes the controller more testable as an object.

Conventions

	Should be only object changing application $state

	Is used in a single context

	Don’t use the $scope variable EVER

	Use ControllerAs syntax

	Don’t $watch variables, use on-change or refactor to use a directive to watch values

Unit Testing

	Set all items that would be required from a route when the Controller is instantiated

	Mock any services used by the controller

Documentation

The only difference between controllers and other components is the
‘.controller:’ part in the @name annotation. It makes controller documentation
appear in controllers section. Be sure to document the methods and properties
that the controller exposes.

/**
 * @ngdoc service
 * @name module-name.controller:controllerName
 *
 * @description
 * Controller description.
 *
 */

Routes

Routing logic is defined by UI-Router, [https://ui-router.github.io/ng1/] where a URL path is typically paired with an HTML View and Controller.

Use a factory where possible to keep resolve statements small and testable

General Conventions

	The UI-Router resolve properties [https://github.com/angular-ui/ui-router/wiki#resolve] are used to ease loading on router

	Routes should define their own views, [https://github.com/johnpapa/angular-styleguide/blob/master/a1/README.md#style-y271] if their layout is more complicated than a single section

HTTP Interceptor

HTTP Interceptors are technically factories that have been configured to ‘intercept’ certain types of requests in Angular and modify their behavior. This is recommended because other Angular objects can use consistent Angular objects, reducing the need to write code that is specialized for our own framework.

Keep all objects in a single file - so its easier to understand the actions that are being taken

The Angular guide to writting HTTP Interceptors is here [https://docs.angularjs.org/api/ng/service/$http#interceptors]

General Conventions

	Write interceptors so they only chanage a request on certain conditions, so other unit tests don’t have to be modified for the interceptors conditions

	Don’t include HTTP Interceptors in openlmis-core, as the interceptor might be injected into all other unit tests — which could break everything

Unit Testing Conventions

The goal when unit testing an interceptor is to not only test input and output transformation functions, but to also make sure the interceptor is called at an appropriate time.

Directive

Directives are pieces of HTML markup that have been extended to do a certain function. This is the only place where it is reasonable to manipulate the DOM.

Make disticntion between directive and component – components use E tag and isolate scope, directive use C and never isolate scope

Conventions

	Restrict directives to only elements or attributes

	Don’t use an isolated scope unless you absolutely have to

	If the directive needs extenal information, use a controller — don’t manipulate data in a link function

Unit Testing

The bit secrect when unit testing a directive is to make sure to use the $compile function to return an element that is extended with jQuery. Once you have this object you will be able to interact with the directive by clicking, hovering, or triggering other DOM events.

describe('SampleDirective', function(){
 it('gets compiled and shows the selected item name', function($compile, $rootScope){
 var scope = $rootScope.$new();
 scope['item'] = {
 name: "Sample Title"
 };
 var element = $compile("<sample-directive selected='item'></sample-directive>")(scope);

 expect(element.text()).toBe("Sample Title");
 });
 it('responds to being clicked', function($compile, $rootScope){
 var element = $compile("<sample-directive selected='item'></sample-directive>")($rootScope.$new());

 // check before the action
 expect(element.text()).toBe("No Title");

 element.click();
 // check to see the results of the action
 // this could also be looking at a spy to see what the values are
 expect(element.text()).toBe("I was clicked");
 });
});

Documentation

Directive docs should have well described ‘@example’ section.

Directive docs should always have ‘@restrict’ annotation that takes as a value one of: A, E, C, M or any combination of those.
In order to make directive docs appear in directives section there needs to be ‘.directive:’ part in @name annotation.

/**
 * @ngdoc directive
 * @restrict A
 * @name module-name.directive:directiveName
 *
 * @description
 * Directive description.
 *
 * @example
 * Short description of how to use it.
 * ```
 * <div directiveName></div>
 * ```
 * Now you can show how the markup will look like after applying directive code.
 * ```
 * <div directiveName>
 * <div>something</div>
 * </div>
 * ```
 */

Extending a Directive

You can extend a directive by using AngularJS’s decorator pattern. Keep in mind that a directive might be applied to multiple places or have multiple directives applied to the same element name.

angular.module('my-module')
 .config(extendDirective);

extendDirective.$inject = ['$provide'];
function extendDirective($provide) {

 // NOTE: This method has you put 'Directive' at the end of a directive name
 $provide.decorator('OpenlmisInvalidDirective', directiveDecorator);
}

directiveDecorator.$inject = ['$delegate'];
function directiveDecorator($delegate) {
 var directive = $delegate[0], // directives are returned as an array
 originalLink = directive.link;

 directive.link = function(scope, element, attrs) {
 // do something
 originalLink.apply(directive, arguments); // do the original thing
 // do something after
 }

 return $delegate;
}

Modal

A modal object isn’t a ‘native Angular object’ — it is a service or factory that displays a modal window. This is done for convience and because it allows modal windows to not be declared in html files — and be used more easily by controllers (or even services, if appropriate).

Use Javascript class

Conventions

Unit Tests

When creating a unit test for a modal service, the unit tests should focus on event driven logic and avoid testing functionality that is tied to the DOM. Since we are using Bootbox to manage the creation of modal elements, we can mock Bootbox and trust the Bootbox will successfully interact with the DOM.

// Imagine testing a modal that will show an alert, and when closed will resolve a promise.
describe('SampleModal', function(){

 // Instead of doing a beforeEach (recommended), this example directly injects dependencies
 it('when closed will resolve promise', function($rootScope, SampleModal, bootbox){

 // Pull out the callback that will be passed to bootbox when the window closes
 var closeCallback;
 spyOn(bootbox, 'alert').andCallFake(function(argumentObject){
 closeCallback = argumentObject.callback;

 // Bootbox is supposed to return a jQuery element, which we will mock with an object
 return {};
 });

 // make a spy to track if the promise works
 var promiseSpy = createSpy();

 // Make the modal, and save the promise...
 var promise = SampleModal().then(promiseSpy);

 // If we check the promiseSpy immedately, it shouldn't have been
 // called because the closeCallback wasn't called...
 expect(promiseSpy).not.toHaveBeenCalled();

 // Call closeCallback, which is out mocked version of clicking the
 // "ok" button on the alert modal
 closeCallback();
 expect(promiseSpy).toHaveBeenCalled();
 });
});

Filters

[Stub]

Documentation

Filter docs should follow the pattern from example below:

/**
 * @ngdoc filter
 * @name module-name.filter:filterName
 *
 * @description
 * Filter description.
 *
 * @param {Type} input input description
 * @param {Type} parameter parameter description
 * @return {Type} returned value description
 *
 * @example
 * You could have short description of what example is about etc.
 * ```
 * <div>{{valueToBeFiltered | filterName:parameter}}</div>
 * ```
 */

It is a good practice to add example block at the end to make clear how to use it.
As for parameters the first one should be describing input of the filter.
Please remember of ‘.filter:’ part. It will make sure that this one will appear in filters section.

HTML Views

Angular allows HTML files to have variables and simple logic evaluated within the markup.

A controller that has the same name will be the reference to vm, if the controller is different, don’t call it vm

General Conventions

	If there is logic that is more complicated than a single if statement, move that logic to a controller

	Use filters to format variable output — don’t format variables in a controller

Memory Leaks

This one is a bit tricky. It’s fairly hard to create a memory leak in AngularJS unless you’re mixing
it with other external libraries that are not based on AngularJS(especially jQuery). Still, there
are some things you need to remember while working with it, this article provides some general
insight on how to find, fix and avoid memory leaks, for more detailed info I would suggest reading
this article [http://www.dwmkerr.com/fixing-memory-leaks-in-angularjs-applications/](it’s awesome!).

Finding memory leaks

I won’t lie, finding out if your application has some memory leaks is annoying, and localizing those
leaks is even more annoying and can take a lot of time. Google Chrome devtools is incredible tool
for doing this. All you need to do is:

	open you application

	go to the section you want to check for memory leaks

	execute the workflow you want to check for memory leaks so any service or cached data won’t be
shown on the heap snapshot

	open devtools

	go to the Profiles tab

	select Take Heap Snapshot

	take a snapshot

	execute the workflow

	take a snapshot again

	go to a different state

	take a snapshot again

	select the last snapshot

	now click on the All objects select and choose Objects allocated between Snapshot 1 and Snapshot
2

This will show you the list of all objects, elements and so on, that were created during the workflow
and are still residing in the memory. That was the easy part. Now we need to analyze the data we
have and this might be quite tricky. We can click on object to see what dependency is retaining them.
There is some color coding here that can be useful to you - red for detached elements and yellow for
actual code references which you can inspect and see. It takes some time and experience to
understand what’s going here but it gets easier and easier as you go.

Anti-patterns

Here are some anti-pattern that you should avoid and how to fix them.

Event handlers using scope

Let’s look at the following example. We have a simple directive that binds an on click action to the
element.

(function() {

 'use strict';

 angular
 .module('some-module')
 .directive('someDirective', someDirective);

 function someDirective() {
 var directive = {
 link: link
 };
 return directive;

 function link(scope, element) {

 element.on('click', onClick);

 function onClick() {
 scope.someFlag = true;
 }
 }
 }

})();

The problem with this link function is that we’ve created a closure with context which retains the
context, the scope and “then basically everything in the universe” until we unregister the handler
from the element. That’s right, even after the element is removed from the DOM it will still reside
in the memory retained by the closure unless unregister the handler. To do this we need to add a
handler for ‘$destroy’ event to the scope object and then unregister the handler from the element.
Here’s an example how to do it.

(function() {

 'use strict';

 angular
 .module('some-module')
 .directive('someDirective', someDirective);

 function someDirective() {
 var directive = {
 link: link
 };
 return directive;

 function link(scope, element) {

 element.on('click', onClick);

 scope.$on('$destroy', function() {

 //this will unregister the this single handler
 element.off('click', onClick);

 //this will unregister all the handlers
 element.off();
 });

 function onClick() {
 scope.someFlag = true;
 }
 }
 }

})();

Improper use of the $rootScope.$watch method

$rootScope.$watch can be a powerful tool, but it also requires some experience to use right. It
allows the developers to create watchers that live through the whole application life and are only
removed when they are explicitly said to unregister or when the application is closed, which may
result in a huge memory leaks. Here are some tips on how to use them.

	Use $scope.$watch when possible!
If you’re using a watcher in a directive, it will have access to the scope object, add the
watcher to it! This way we take advantage of AngularJS automatic watcher unregistration when the
scope is deleted.

	Avoid using $rootScope.$watch in factories.
Don’t use it in factories unless you’re completely sure what you’re doing. Remember to
unregister it when it is no longer needed! This takes us to the next bullet point.

	Use them in Services.
Watching for current locale can be great example of that. We’re using it with service, which is
a singleton - it is only created once during application lifetime - and we want to watch for the
current locale all the time we rather won’t want to stop at any point.

	Unregister it if it is no longer needed.
If you’re sure you won’t be needing that watcher any longer simply unregister it! Here’s an
example

var unregisterWatcher = $rootScope.$watch('someVariable', someMethod);
unregisterWatcher();

Using callback functions

Using callback isn’t the safest idea either as it can cause some function retention. AngularJS gives
us awesome tool to bypass that - promises. They basically gives us the same behavior and are
retention-risk free!

Performance Testing

OpenLMIS focuses on performance metrics that are typical in web-applications:

	Calls to the server - how many milliseconds does this single operation take,
and is the memory usage reasonable.

	Network load - how large are the resources returned from the server.
Typically OpenLMIS is designed to work in network-constrained locations, so
the size, in bytes, of each resource is important.

	The number of calls the Reference UI makes - again networks being what they,
we want to minimize the number of connections that are made to accomplish
a user workflow as each connection adds overhead.

	Size of the “working” data set. Here working data is defined as the data
that’s needed for a user to accomplish a task. Examples are typically
Reference Data: # of Products, # of Facilities, # of Users, etc. Though also
the # of Requisitions or # of Stock Cards might factor into a user’s working
data. Since OpenLMIS typically manages countries, it’s important that we’re
efficient in managing country-level data sets.

There are some areas of Performance however that OpenLMIS typically doesn’t
focus as much on:

	Scaling - typically we’re not concerned with tens of thousands of people
needing to use the system concurrently. Likewise we don’t typically worry
yet about surges or dips in user activity requiring more or less resources to
serve those users.

Getting Started

OpenLMIS uses Apache JMeter [http://jmeter.apache.org/] to test RESTful endpoints. We use Taurus [http://gettaurus.org/], and
it’s YAML format, to write our test scenarios and generate reports which our CI
server can present as an artifact of every successful deployment to our CD
test server.

Keeping to our conventions, Taurus [http://gettaurus.org/] is used through a Docker image, with a
simple script located at ./performance/test.sh with tests in the directory
./performance/tests/ of a Service. Any *.yml file in that test directory
will be fed to Taurus to be used against https://test.openlmis.org.

Running test.sh will place JMeter output as well as Taurus output under
./build/performance-artifacts/. The file stats.xml has the final summary
performance metrics. Files of note when developing test scenarios:

	error-N.jtl - Contains errors and requests that led to those errors from the
HTTP server.

	JMeter-N.err - Contains JMeter errors where JMeter didn’t understand the
test scenario.

	modified_requests-N.jmx - Contains the generated JMeter requests
(after Taurus generation).

	kpi-N.jtl - Individual metrics of a test scenario.

Running in CI

Tests run in a Jenkin’s Job that ends in -performance. This job is run as
part of each Service’s build pipeline that results in a deployment to the test
server.

The reports are presented using Performance Plugin [https://wiki.jenkins.io/display/JENKINS/Performance+Plugin]. When looking at this
report you’ll see:

	A graph that shows all of the endpoints (requests) over time.

	A report for a build which includes an average over time, as well as a table
showing KPIs of each request.

A simple Scenario (with authentication)

Nearly all of our RESTful resources require authentication, in this example
we’ll show a basic test scenario that includes authentication. The syntax and
features used here are documented at Taurus’ page on the JMeter executer [http://gettaurus.org/docs/JMeter/].

execution:
 - concurrency: 1
 iterations: 10
 scenario: users-get-one
scenarios:
 get-user-token:
 requests:
 - url: ${__P(base-uri)}/api/oauth/token
 method: POST
 label: GetUserToken
 headers:
 Authorization: Basic ${__base64Encode(${__P(basic-auth)})}
 body:
 grant_type: password
 username: ${__P(username)}
 password: ${__P(password)}
 extract-jsonpath:
 access_token:
 jsonpath: $.access_token
 users-get-one:
 requests:
 - include-scenario: get-user-token
 - url: ${__P(base-uri)}/api/users/a337ec45-31a0-4f2b-9b2e-a105c4b669bb
 method: GET
 label: GetAdministratorUser
 headers:
 Authorization: Bearer ${access_token}

The execution block defines for our test scenario users-get-one that runs
1 concurrent user, 10 times sequentially. Notice that this definition is for
the simplest of test executions - 1 user, run it enough times to get a useful
sampling. We use this sort of test execution to first get a sense of what our
endpoint’s single-user characteristics are.

Next notice that we have two scenarios defined:

	get-user-token - this is a reusable scenario, which gets a basic user
authentication token, and through the extract-jsonpath saves it to a
variable named access_token.

	users-get-one - this is the test scenario we’re primarily interested in:
exercise the /api/users/{a specific users uuid}. We pass the previously
obtained access_token through the HTTP request’s headers.

Summary

	First test the most basic of environments: 1 user, enough times to get an
average.

	Re-use the scenario to obtain an access_token using include-scenario.

	It’s generally OK to use demo-data identifiers (the user’s UUID) - though it
couples the test to the demo-data, it will provide consistent results.

	Give each request a clear, semantic label. This will be used later in
pass-fail criteria.

Testing collections

To the simple Scenario we’re going to now test the performance of returning
a collection of a resource:

users-search-one-page:
 requests:
 - include-scenario: get-user-token
 - url: ${__P(base-uri)}/api/users/search?page=1&size=10
 method: POST
 label: GetAUserPageOfTen
 body: '{}'
 headers:
 Authorization: Bearer ${access_token}
 Content-Type: application/json

Here we’re testing the Users resource by asking for 1 page of 10 users.

Summary

	When testing the performance of collections, the result will be influenced
by the number of results returned. Due to this prefer to test a paginated
resource, and always ask for a number that exists (i.e. don’t ask for 50 when
demo-data only has 40).

	Searching often requires a POST, in this case the query parameters must be in
the URL.

Testing complex workflows

A complex workflow might be:

	GET a list of periods for which requisitions may be initiated.

	Create a new Requisition resource by POSTing with the previously returned
periods available.

	DELETE the previously created Requisition resource, so that we may test
again.

initiate-requisition:
 requests:
 - url: ${__P(base-uri)}/api/oauth/token
 method: POST
 label: GetUserToken
 headers:
 Authorization: Basic ${__base64Encode(${__P(user-auth)})}
 body:
 grant_type: password
 username: ${__P(username)}
 password: ${__P(password)}
 extract-jsonpath:
 access_token:
 jsonpath: $.access_token
 # program = family planning, facility = comfort health clinic
 - url: ${__P(base-uri)}/api/requisitions/periodsForInitiate?programId=10845cb9-d365-4aaa-badd-b4fa39c6a26a&facilityId=e6799d64-d10d-4011-b8c2-0e4d4a3f65ce&emergency=false
 method: GET
 label: GetPeriodsForInitiate
 headers:
 Authorization: Bearer ${access_token}
 extract-jsonpath:
 periodUuid:
 jsonpath: $.[:1]id
 jsr223:
 script-text: |
 String uuid = vars.get("periodUuid");
 uuid = uuid.replaceAll(/"|\[|\]/, "");
 vars.put("periodUuid", uuid);
 - url: ${__P(base-uri)}/api/requisitions/initiate?program=10845cb9-d365-4aaa-badd-b4fa39c6a26a&facility=e6799d64-d10d-4011-b8c2-0e4d4a3f65ce&suggestedPeriod=${periodUuid}&emergency=false
 method: POST
 label: InitiateNewRequisition
 headers:
 Authorization: Bearer ${access_token}
 Content-Type: application/json
 extract-jsonpath:
 reqUuid:
 jsonpath: $.id
 jsr223:
 script-text: |
 String uuid = vars.get("reqUuid");
 uuid = uuid.replaceAll(/"|\[|\]/, ""); # remove quotes and []
 vars.put("reqUuid", uuid);
 - url: ${__P(base-uri)}/api/requisitions/${reqUuid}
 method: DELETE
 label: DeleteRequisition
 headers:
 Authorization: Bearer ${access_token}

Summary

	When creating a new RESTful resource (e.g. PUT or POST), we may need to
clean-up after ourselves in order to run more than one test.

	JSR223 blocks allow us to execute basic Groovy (default). This can be
especially useful when you need to clean-up a JSON result from a previous
response, such as a UUID, to use in the next request.

Simple stress testing

As mentioned, OpenLMIS performance tests tend to focus first on basic
execution environments where we’re only testing 1 user interaction at a time.
However there is a need to do basic stress testing, especially for endpoints
which are used frequently. For example we’ve seen the authentication resource
used repeatedly in all our previous examples. Lets stress test it.

modules:
 local:
 sequential: true

execution:
 - concurrency: 10
 hold-for: 2m
 scenario: get-user-token
 - concurrency: 50
 hold-for: 2m
 scenario: get-service-token

scenarios:
 get-user-token:
 requests:
 - url: ${__P(base-uri)}/api/oauth/token
 method: POST
 label: GetUserToken
 headers:
 Authorization: Basic ${__base64Encode(${__P(user-auth)})}
 body:
 grant_type: password
 username: ${__P(username)}
 password: ${__P(password)}
 get-service-token:
 requests:
 - url: ${__P(base-uri)}/api/oauth/token
 method: POST
 label: GetServiceToken
 headers:
 Authorization: Basic ${__base64Encode(${__P(service-auth)})}
 body:
 grant_type: client_credentials

Here we’ve defined 2 tests:

	Authenticate as if you’re a person.

	Authenticate as if you’re another Service (a Service token).

The stress testing here introduces important changes in our execution block:

- concurrency: 10
 hold-for: 2m
 scenario: get-user-token

Instead of defining 1 user, here we’ll have 10 concurrent ones. Instead of
running the test 10 times, we’re going to run the test as many times as we
can for 2 minutes. For further options see the Taurus’ Execution doc [http://gettaurus.org/docs/ExecutionSettings/#Load-Profile].

When stress testing, it’s important to remember that too much simply isn’t
useful, and only slows down the test. Nor do we presently have a
test infrastructure in place that allows for tests to originate from multiple
hosts.

Summary

	You can define multiple execution definitions for the same scenario, so the
first might give us the basic performance characteristics, the second might
be a stress test.

	By default the tests defined in the execution block are run in parallel.
This can be changed to by ran sequential with sequential: true.

	Choose a reasonable number of concurrent users. Typically less than a dozen
is enough.

	Choose a reasonable time to hold the test for. Typically 1-2 minutes is
enough, and no more than 5 minutes unless justifiable.

	Remember that we don’t have a performance testing infrastructure in place
that can concurrently send requests to our application from multiple hosts.
OpenLMIS performance testing typically only requires the most basic stress
testing.

Pass-fail criteria

With the above tests defined, we can now write pass-fail criteria. This is
especially useful if we want our test to fail when the performance is less than
what we’ve defined.

reporting:
 - module: passfail
 criteria:
 - avg-rt of GetUserToken>300ms, continue as failed
 - avg-rt of GetServiceToken>300ms, continue as failed

This allows us to fail the test if the average response time for either of the
two tests was greater than 300ms. See the Taurus Passfail doc for more.

Summary

	Write the pass-fail criteria within the test definition.

Performance Acceptance Criteria

With Taurus we can now add basic acceptance criteria when working on new issues.
For example the acceptance criteria might say:

	the endpoint to retrieve 10 users should complete in 500ms for 90% of users

This would lead us to write a performance test for this new GET operation to
retrieve 10 users, and we’d add a pass-fail criteria such as:

reporting:
 - module: passfail
 criteria:
 90% of users fail to get 10 users in time: p90 of Get10Users>500ms, continue as failed

Read the Taurus Passfail doc [http://gettaurus.org/docs/PassFail/] for more.

Next Steps (WIP)

We’ve covered basic performance testing, stress testing, and pass-fail criteria.
Next we’ll be adding:

	Loading performance-oriented data sets (e.g. what happens to these requests
when there are 10,000 products).

	Using Selenium to mimic browser interactions, to give us:
	How many http requests does a page incur.

	Network payload size.

	Failing deployments based on performance results.

Performance Data

Performance data in OpenLMIS is meant to be data that helps us answer questions
such as:

	What happens to the server and the operations it provides when there are
10,000 orderables, users, facilities, requisitions, etc?

	What happens when all that data is being used by many concurrent users?

	What’s the impact on network performance, especially for those in low resource
environments?

	What sort of deployment topology works best for typical implementations?

	Does the UI (and possibly other clients) display large sets of data well?

Some basic characteristics of performance data:

	there is a lot of it

	it doesn’t have to look nice or make that much sense to domain experts (e.g.
a Vaccine could be randomly generated to be ordered through the essential meds
Program, and that’s okay). Lorem ipsum and random numbers are just fine here.

	it must be deployable in a deployment topology that is as close to a
production setup as possible. After all it’s for performance testing, and
performance testing on a local laptop doesn’t tell us (much) about anything a
production server running in the cloud would experience.

Where is performance data located?

Performance data is stored in Git within each Service that defines it, much
like demo-data. In fact in most cases Performance Data builds off of demo-data,
and so a Service should be able to load performance data or demo-data in very
similar ways.

How to load performance data

Like demo-data, performance data is an optional set of data that may be loaded
when the Service starts. To do this a Service should load performance data,
likely after any demo-data, by looking for the profiles set in the environment
variable spring.profiles.active. If this environment variable contains
the string performance-data, then the service should load this data
before it’s operational for use.

How to create and manage performance data

Performance data is generated with the help of the tool Mockaroo [http://mockaroo.com]. This
tool is used to define schemas which match the Service’s tables and it may
generate large CSVs which are then stored in the Service in git. CSVs are used
as they easily enable the use of foreign key / UUID lookups when a Mockaroo
dataset is used (as this Mockaroo dataset video [https://youtu.be/XATDlwG1azU] demonstrates). These CSVs
are placed in git for the Service to load the data, however if the Service needs
new performance data, the database schema changes or something else causes the
performance data to need to be updated, the OpenLMIS Mockaroo account should
be used to generate a new set, which will then be stored in the Service.

What types of performance data should be created?

Performance data is relatively expensive and tedious to maintain given the
questions we’re trying to answer. While it’s necessary to do so, here are some
general guidelines for what to spend time generating, and what not to:

Do

	Generate performance data that will allows performance tests to reflect
country data needs.

	Try to generate data that’s more right than random. Random is okay, However
if the tool has a sufficiently large set of facilities, or products, use it.

	Respect database constraints, foreign keys, references to IDs in other
Services etc

	Keep in mind that some UUIDs need to be known. They can’t be generated.
You’ll need to know a few of these key UUIDs (e.g. Program, User, etc) in
order to construct useful performance tests.

Don’t

	Overcomplicate the data. 1 billion facilities, a trillion requisitions, 1000
programs just aren’t anywhere near likely and just take longer to load and
more time to maintain. 10k facilities, 100k requisitions, 10 programs are
much more representative.

	Similarly, don’t generate data when demo-data already has enough. E.g. demo
data already has a few Programs, you’re time is better spent setting up one
of those programs to have 10k facility type approved products than you are
generating 100 programs.

	Don’t build performance tests off of generated IDs. While Mockaroo makes it
easy to build sets of data with referential integrity, using generated IDs
hardcoded in performance tests will result in more brittle tests.

Performance Tips

Testing and Profiling

Knowing where to invest time and resources into optimization is always the first step. This
document will briefly cover the highlights of two tools which help us determine where we should
invest our time, and then we’ll dive into specific strategies for making our performance better.

To see how to test HTTP based services see Performance Testing.

Profiling

After we’ve identified that a HTTP operation is slow, there are two simple tools that can help us
in understanding why:

	SLF4J Profiler [https://www.slf4j.org/extensions.html#profiler]: useful in printing latency meassurements to our log. It’s cheap and a bit
inaccurate, though quite effective and it works in all production environments.

	VisualVM [https://visualvm.github.io/]: perhaps the most well known Java profiling tool can give great information about
what the code is doing, however since it needs to connect directly to the JVM running that
Service’s code, it’s better suited for local development environments rather than debugging
production servers.

The usefulness of basic profiling metrics from production environments can’t be understated.
Performance issues rarely occur in local development environments and the people most impacted by
slow performance are people using production systems. Just as our performance tests operate against
a Recommended Deployment Topology that tries to match what most of our customers use, so to is it
useful to know how that code is performing in customer implementations. For these reasons this
document will focus more on logging performance metrics with SLF4J Profiler rather than VisualVM.

Using SLF4J Profiler in Java code is as simple as:

Profiler profiler = new Profiler("GET_ORDERABLES_SEARCH");
profiler.setLogger(XLOGGER); // can be SLF4J Logger or XLogger

profiler.start("CHECK_ADMIN_RIGHT");
rightService.checkAdminRight(ORDERABLES_MANAGE);

profiler.start("ORDERABLE_SERVICE_SEARCH");
Page<Orderable> orderablesPage = orderableService.searchOrderables(queryParams, pageable);

profiler.start("ORDERABLE_PAGINATION");
Page<OrderableDto> page = Pagination.getPage(OrderableDto.newInstance(
 orderablesPage.getContent()),
 pageable,
 orderablesPage.getTotalElements());

profiler.stop().log();

This will generate log statements that look like the following:

2017-07-24T19:49:45+00:00 e2f424e5b617 [nio-8080-exec-5] DEBUG
org.openlmis.referencedata.web.OrderableController #012+ Profiler
[GET_ORDERABLES_SEARCH]#012|
-- elapsed time [CHECK_ADMIN_RIGHT] 1173.997 milliseconds.#012|
-- elapsed time [ORDERABLE_SERVICE_SEARCH] 199.251 milliseconds.#012|
-- elapsed time [ORDERABLE_PAGINATION] 0.255 milliseconds.#012|
-- Total [GET_ORDERABLES_SEARCH] 1373.511 milliseconds.

Placed in the Controller for this HTTP operation we can tell:

	Most of the time for this innvocation is spent checking if the user has a right: more than
1 second.

	Fetching the entities from the database took about 14% of the time

	Turning them into DTOs used up less than a millisecond.

	We’d have to look at the Service’s access log to find where additional latency is introduced that
we can’t meassure here: serialization, IO overhead, Spring Boot magic, etc

This easily lets us know that improving the performance of the permission check might be well worth
the effort. Since this information is in the logs we can also monitor and graph the performance of
the data retrievel latency (ORDERABLE_SERVICE_SEARCH) in real-time with a well crafted search on our
logs.

SLF4J Profile Conventions

	Use the Profiler in Controller methods for code that’s released to production. While in
development you can use a Profiler anywhere you wish, it tends to clutter the code and the logs
longer term. A few well placed Profiler.start() statements, left in the Controller however,
can pay dividends longer term when performance issues need to be diagnosed in implementations.

	Prepend the HTTP operation to the beginning of the name. So GET_ORDERABLES_SEARCH and
not ORDERABLES_SEARCH.

	Prefer all upper-case snake_case. e.g. GET_ORDERABLES_SEARCH never
getOrderablesSearch.

	Be descriptive and strategic in your Profiler.start() names and locations. E.g. use a new
Profiler.start() before a block/method that does something unlike the code before it: checking
permissions, retrieving data, performing an update, returning a result. Use names that are clear
for those who’ll be reading the logs in production systems years from now.

Logging

In our service-architecture we have many different components where latency can be introduced and
therefore logs we need to examine when diagnosing where time is being spent:

From the top of the stack down:

	The Amazon ELB: typically the first place a request arrives, there is usually a very minor
bit of latency incurred here. ELB logging if turned on is typically logged to S3.

	Nginx reverse-proxy: Nginx is the place for finding HTTP operations. Requests from clients
are routed through Nginx to upstream (aka backend) Services, and from service to service. The
Nginx access log [https://github.com/OpenLMIS/openlmis-nginx#nginx-access-log-format] is the first place to see how long it took to process the request and how much
time was spent in an upstream service performing the operation.

	Service HTTP access log: these (tomcat) access logs are not always prominent however they can
be turned on to give an idea of how much time the Service’s HTTP server spent serving the request
as opposed to how much time was spent transmitting the data. With good network connectivity
between Nginx and backend Service (typically localhost), this is rarely an issue, though it can
sometimes uncover hidden issues.

	Service’s Profiler statements: these logging statements from Java code are treated like all
other Java logging statements and are channeled through our centralised Rsyslog container
to be aggregated and written to disk (and later picked up by log monitoring service - Scalyr).

	Database: queries take time, transactions can block, etc. Database logs can uncover both the
time specific queries take as well as the actual SQL that’s being run in the database. These
logs are typically sourced and monitored through the RDS service (and Scalyr).

Lets look at an example of a call seen by Nginx and the Profiler.

Service’s Profiler (again):

2017-07-24T19:49:45+00:00 e2f424e5b617 [nio-8080-exec-5] DEBUG
org.openlmis.referencedata.web.OrderableController #012+ Profiler
[GET_ORDERABLES_SEARCH]#012|
-- elapsed time [CHECK_ADMIN_RIGHT] 1173.997 milliseconds.#012|
-- elapsed time [ORDERABLE_SERVICE_SEARCH] 199.251 milliseconds.#012|
-- elapsed time [ORDERABLE_PAGINATION] 0.255 milliseconds.#012|
-- Total [GET_ORDERABLES_SEARCH] 1373.511 milliseconds.

Nginx access log:

10.0.0.238 - - [24/Jul/2017:19:49:45 +0000] "POST /api/orderables/search HTTP/1.1" 200 18455 "-" "Java/1.8.0_92" 1.401 0.000 1.401 1.401 .

Read the Nginx access log [https://github.com/OpenLMIS/openlmis-nginx#nginx-access-log-format] format for the details of what these numbers mean. What we can tell
comparing these two is that:

	the total time to the user (just for this operation, not a web-page) was 1.4 seconds.

	All of that time was spent by the Reference Data service (because response time == upstream time).

	There is 28ms of latency not accounted for in our Profiler. It could be time spent in
serialization of Java objects, Spring Boot overhead, tomcat overhead, network overhead (e.g.
we were suffering from a 200ms delay due to a TCP configuration being off previously).

	Our user must be on a fast network connection, as Nginx spent the same time serving the response
as it did getting the results from the upstream server. (a bit oversimplified).

	Approx 18.5KB was returned in this Orderables Search.

RESTful representations and the JPA to avoid

Avoid loading entities unnecessarily

Don’t load an entity object if you don’t have to; use Spring Data JPA
exists() instead. A good example of this is in the RightService for
Reference Data. The checkAdminRight() checks for a user when it receives
a user-based client token. If the user is checking their own information, they
only need to verify the existence of the user, instead of getting the full User
info (using findOne()). Spring Data JPA’s CrudRepository supports this
through the method exists().

In Spring Data JPA 1.11’s (shipped in Spring Boot 1.5+) CrudRepository
ships with exists() support for more than just the primary key column using Projections.

For example, take this bit of code that was found when searching for Orderables
by a Program’s code:

// find program if given
Program program = null;
if (programCode != null) {
 program = programRepository.findByCode(Code.code(programCode));
 if (program == null) {
 throw new ValidationMessageException(ProgramMessageKeys.ERROR_NOT_FOUND);
 }
}

This requires a trip to the database, which will need to pull the entire Program
entity, back to the Service which will then turn it into a Java object... which will finally
do what we actually wanted and check if the Program is null. Using an exists check, we can write
code such as:

// find program if given
Code workingProgramCode = Code.code(programCode);
if (false == workingProgramCode.isBlank()
 && false == programRepository.existsByCode(workingProgramCode)) {
 throw new ValidationMessageException(ProgramMessageKeys.ERROR_NOT_FOUND);
}

The important part here is the use of the repositories existsByCode(...), which is a
Spring Data projection [https://docs.spring.io/spring-data/rest/docs/current/reference/html/#projections-excerpts.projections]. This will avoid pulling the row, avoid turning a row into a Java object,
and in general can save upwards of 100ms as well as the extra memory overhead. If the column is
indexed (and well indexed), the database may even avoid a trip to disk, which typically can bring
this check in under a millisecond.

Use Database Paging

Database paging is vastly more performant and efficient than Java paging or not paging at all.
How much more? Before the Orderable’s search resource was paged in the database, it was paged in
Java. In Java pulling a page of only 10 Orderables out of a set of 10k Orderables took around 20
seconds. After switching to database paging, this same operation took only 2 seconds (10x more
performant) and of that 95% of those 2 seconds are spent in an unrelated permission check.

The database paging pattern [https://groups.google.com/d/msg/openlmis-dev/WniSS9ZIdY4/B7vNXcchBgAJ] was established and as of this writing is not well enough adopted.
Remember when paging to:

	Follow the pagination API conventions [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md#pagination].

	Use Spring Data Pageable [https://docs.spring.io/spring-data/data-commons/docs/1.6.1.RELEASE/reference/html/repositories.html#repositories.special-parameters] all the way to the query.

	Spring Data projection [https://docs.spring.io/spring-data/rest/docs/current/reference/html/#projections-excerpts.projections] makes this easy (more so in 1.11+). So code like this just works:

@Query("SELECT o FROM Orderable o WHERE o.id in ?1")
Page<Orderable> findAllById(Iterable<UUID> ids, Pageable pageable);

	If it’s an EntityManager.createQuery(), you’ll need to run 2 queries: one for a
count() and one for the (sub) list.

	If you’re a client, use the query parameters to page the results - otherwise our convention
will be to return the largest page we can to you, which is slower.

Follow the pattern in Orderable search [https://github.com/OpenLMIS/openlmis-referencedata/blob/8de4c200aaf7ccb3dc1e450eb606185a953a8448/src/main/java/org/openlmis/referencedata/web/OrderableController.java#L157].

Eager Fetching & Lazy Loading

Eager fetching and lazy loading refer to the loading strategy an ORM takes when loading related
Entities to the one that you’re interested in. When done right, eager fetching can eliminate the
N+1 problem in the next section. When done wrong, your service can consume all it’s available
memory and stall out.

Most often eager loading is not the right strategy to choose, and while Hibernate’s default is to
always use lazy loading, we should remember that Hibernate uses the JPA recommendation to lazily
load all *ToMany relationships and eagerly fetch *ToOne relationships.

Eagerly fetching *ToOne relationships is not wrong, however we can’t talk about eager fetching and
lazy loading without analyzing what the typical uses of retrieving data/entities is. For that
we’ll look at the N+1 problem.

N+1 loading

In the simplest terms, N+1 loading occurs when an entity is loaded, related entities are marked as
lazily loaded, and then the Java code (service, controller, etc) navigates to the related entity
causing the JPA implementation to go load that related entity, which typically is an IO event back
to the database. This is especially egregious when the related entity is actually some sort of
collection (*ToMany relationship). For each element that’s navigated to in the relationship, often
another IO call occurs back to the database.

Avoiding N+1 loading is best done through designing for the common case. Take for example a User
entity, which has a lazily loaded OneToMany relationship with RoleAssignments. We might think that
the common case we should design for is updating a user and their RoleAssignments. If we design for
this we’ll likely place the full RollAssignment resource in the representation for GET and PUT of a
User. Since the relation is lazily loaded we’ll incur N+1 loads: 1 for the User and N for the #
of RoleAssignments. If we changed the relation to be eagerly fetched, then we’d pull all N
RollAssignments when any bit of Java code loaded the User - even if we just needed the User’s ID or
name.

The simplest solution therefore is to use a lazily loaded relation, and remove the full
representations of RoleAssignments from the User resource. After all, updating a User is actually
pretty uncommon compared to retrieving a User, or even retriving the User with RoleAssignments to
check that user’s rights. If we do actually need a User’s RoleAssignments, we don’t actually want
to retrieve them with the User, rather we’ll likely want a specific sub Resource of a User for
managing their RoleAssignments. This sub-resource would typically look like:

	/api/users/{id}

	/api/users/{id}/roleAssignments

This would optimize the common case (just load a User to get their name/profile), and provide a
seperate resource which could be optimized for pulling that User’s RoleAssigments in one trip to the
database.

Summary

	Build RESTful resource representations that are shallow: that is don’t load more than just the
single entity being asked for.

	No FETCH JOINS [http://learningviacode.blogspot.nl/2012/08/fetch-join-and-cartesian-product-problem.html]

	Don’t use eager fetching unless it’s really safe to do so. It might seem to solve the above
problem, but it can go awry quickly. Just use lazy loading.

	During development you can set environment variables to show what SQL [https://stackoverflow.com/questions/30118683/how-to-log-sql-statements-in-spring-boot] is actually being run by
Hibernate.

Database JOINs are expensive

Simply put a database join is expensive. While our Services should not denormalize [https://stackoverflow.com/questions/173726/when-and-why-are-database-joins-expensive] to avoid
many joins, we should consider the advice in the FlattenComplexStructures section, especially
when such a representation is used frequently by other clients.

Indexes

When done right an index can prevent the database from ever having to go to disk - a slow operation.
Done wrong and a plethora of indexes can eat up memory and not prevent disk operations.

Some tips (PostgreSQL):

	The primary key is indexed. When you know what you want, using it’s primary key, a UUID, is
usually the most effecient.

	Foreign keys are not automatically indexed in PostgreSQL, however they almost always should be.

	You almost always want a B-tree index (the default).

	Unique columns are some of the best indicies, when it’s not a unique column, keep in mind that
low cardinality indexes negatively impact performance [https://www.ibm.com/developerworks/data/library/techarticle/dm-1309cardinal/]

	Don’t over-index, each index takes up memory. Choose them based on the common search (i.e. WHERE
clause) and prefer to search based on high-cardinality columns with indexes.

	More indexing tips [https://devcenter.heroku.com/articles/postgresql-indexes]

Flatten complex structures

We should take complex structures that do not change often, flattening and
storing them in the database. This would create a higher expense in writes, but
improve performance in reads. Since reads would be more common than writes, the
trade-off is beneficial overall.

A good example here are the concept of permission strings. The role-based
access control (RBAC) for users is complex, with users being assigned to roles
potentially by program, facility, both, or neither. However, all of the rights
that a user has can be represented by a set of permission strings, with
complexity represented in different string formats. Formats as follows:

	RightName - for general rights

	RightName|FacilityUUID - for fulfillment rights

	RightName|FacilityUUID|ProgramUUID - for supervision rights

The different parts of the permission are in different parts of the string, and
each part is delimited with a delimiter (pipe symbol in this case).

These strings, or each part of these strings, are saved as rows in a separate
table and retrieved directly. This dramatically improves read performance,
since we avoid retrieving the complex RBAC hierarchy and manipulating it in the
Java code.

See https://groups.google.com/d/msg/openlmis-dev/wKqgpJ2RgBA/uppxJGJiAwAJ for
further discussion about permission strings.

HTTP Cache

E-tag and if-none-match

HTTP Caching [https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching] in a nut-shell is supporting the use of fields in an HTTP header that can help
identify if a previous result is no longer valid. This can be very useful for the typical OpenLMIS
user that is often in an environment with low network bandwidth.

In our Spring services this can be as simple as:

@RequestMapping(value = "/someResource", method = RequestMapping.GET)
public ResponseEntity<SomeEntity> getSomeResource(@PathVariable("id") UUID resourceId) {
 ...
 // do work
 ...

 return ResponseEntity
 .ok()
 .eTag(Integer.toString(someResource.hashCode()))
 .body(someResource);
}

The key points here are:

	someResource must accurately implement hashCode().

	The Object’s hashCode is returned to the HTTP client (browser) in the :code`etag` header.

	On subsequent calls the HTTP client should include the HTTP header if-none-match with the
previously returned etag value. If the etag value is the same, a HTTP 304 is returned, without
a body, saving network bandwidth.

This simple implementation won’t however save the server from processing the request and generating
the etag from the Object’s hashCode(). If this server operation is particularly expensive,
further optimization should be done in the controller to use a field other than the
hashCode() and to return early:

@RequestMapping(value = "/someResource", method = RequestMapping.GET)
public ResponseEntity<SomeEntity> getSomeResource(
 @RequestHeader(value="if-none-match") String ifNoneMatch,
 @PathVariable("id") UUID resourceId) {

 if (false == StringUtils.isBlank(ifNoneMatch)) {
 long versionEtag = NumberUtils.toLong(ifNoneMatch, -1);
 if (someResourceRepo.existsByIdAndVersion(resourceId, versionEtag)) {
 return ResourceEntity
 .ok()
 .etag(ifNoneMatch);
 }
 }

 ...
 // do work
 ...

 return ResponseEntity
 .ok()
 .eTag(Integer.toString(someResource.getVersion())
 .body(someResource);
}

The key to the above is using a property of an entity that changes every time the object changes,
such as one marked with @Version, to use as the resource’s etag. By storing the basis of
the etag in the database, we can run a query which simply goes and sees if that entity still has
that version, and if it does we can return a HTTP 304. The property used here could be anything,
so long as we can search for it in a way that saves processing time (hint: a good choice with
high-cardinality would be a multi-column index on the id and the version).
Another good choice could be a LastModifiedDate [https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#auditing.basics].

Cache-control

WIP:

	no-cache

	private

	max-age

Deployment

Deployment is done currently through Docker and Docker Compose. A living
example of deployment scripts and documentation that the OpenLMIS product uses
to deploy demo and CD environments is available in the openlmis-deployment
repository. Documentation from that repository is listed below:

	Recommended Deployment Topology

	How to provision a single Docker host in AWS

	How to provision a docker swarm for deployment in AWS (With ELB)

	How to provision a docker swarm for deployment in AWS (With Elastic IP)

	Deployment Environments

	RDS configuration

Recommended Deployment Topology

OpenLMIS uses and therefore recommends that most deployments utilize Amazon Web Services (AWS). However OpenLMIS is in no way
tied to only being deployed on AWS.

The basic ingredients of an OpenLMIS deployment are:

	a domain name to reach the installation at (e.g. test.openlmis.org)

	a SSL certificate to make the communication to OpenLMIS secure over the web

	a computer/instance/etc that can run Docker Machine (as well as Compose, etc) with enough bandwidth, processing power, memory and
storage to run many (6+) Services and associated utilities

	a computer/instance/etc that can run PostgreSQL for those Services

	credentials with an SMTP server to send emails

In AWS (a region close to your users) this would be:

	A DNS provider for your domain name (e.g. test.openlmis.org). This could be Route 53, however currently OpenLMIS deployments do
not utilize this service.

	A SSL certificate from AWS Certificate Manager

	A ELB that can route to/from the OpenLMIS instance and serve the ACM SSL certificate (this becomes more useful when running out
of Elastic IPs)

	an EC2 Instance (m4.large - 2vCPU, 8GiB memory, 30GB EBS store)

	an RDS Instance (db.t2 class instances are used below because most OpenLMIS
deployments have long periods of inactivity where the t2 class’ credits are
able to accumulate. Choose another class if your deployment will be
actively used for more than half the day):
	For local development, QA, and small private demos: use Ref Distro’s
included database or a db.t2.micro (though you’ll need to increase the
max_connections parameter to >150)

	For CD, public demos, UAT, and small production: db.t2.medium

	For medium and larger production instances: db.t2.large and up based on need:
	When reports are frequently run

	When the number of Products (full and non-full supply) > 500

	When the number of Requisitions (historical and planned for next 2
processing periods) > 100,000

	a VPC for your EC2 and RDS instances, with appropriate security group - SSH, HTTP, HTTPs, Postgres (limit source to Security Group)
at minimum.

	Amazon SES with either the domain (w/DKIM) verified or a specific from-address

For more information on setting this up, see the
Provisioning [https://github.com/OpenLMIS/openlmis-deployment/blob/master/provision/Provision-single-host.md] section and also follow
the link for backing up/restoring
RDS [https://github.com/OpenLMIS/openlmis-deployment/blob/master/deployment/README.md#using-amazons-rds]. For more information on how
to configure your RDS please visit
RDS configuration [https://github.com/OpenLMIS/openlmis-deployment/blob/master/provision/RDS-configuration.md] page.

How to provision a single Docker host in AWS

If case the deployment target is one single host, then swarm is not needed.

In that case, refer to Provision-swarm-With-Elastic-ip.md for step 1, 2, 3, 5.
Omit step 4, that should be sufficient to provision a single host deployment environment.

Note: choose ubuntu instead of amazon linux distribution.
Even though this single host won’t be running a swarm, ubuntu is still preferred over amazon linux distribution.
Because docker-machine does not support provisioning amazon linux distribution.
However, you can manually provision the single host, but then making that host remotely accessible would be tricky and involves a lot of manual steps.

Database

If deploying OpenLMIS with the included Docker Container for Postgres, then no further steps are needed. However this setup
is recommended only for development / testing environments and not recommended for production installs.

Test and UAT environments in this repository demonstrate that Postgres could be installed outside of Docker and OpenLMIS
services may be pointed to that Postgres server. Test and UAT both use Amazon’s RDS service to help manage production-grade
database services such as automated patch release updates, rolling backups, snapshots, etc.

Some notes on provisioning an RDS instance for OpenLMIS:

	Test and UAT are both capable of running on economical RDS instances: db.t2.micro

	When choosing a small RDS instance, the max number of connections are set based on an ideal number from RDS. OpenLMIS services
tend toward using about 10 DB connections per service. Therefore Tests and UAT instances use a Parameter Group named Max Connections
that increase this limit to 100. Larger, more expensive, instances likely won’t have this limitation.

	RDS instances are in a private VPC and in the same availability zone as their EC2 instance and it’s ELB. The security group used
should be the same as used for the EC2 instance, though it should limit incoming PostgreSQL connections to only those from the security
group.

	Don’t forget to update the .env file used to deploy OpenLMIS with the correct Host, username and password settings.

How to provision a docker swarm for deployment in AWS (With ELB)

1. Network setup

Create a VPC for the new swarm cluster.

In it, there should be 2 subnets created(which is needed by AWS ELB later).

Ensure the subnets will assign public ip to EC2 instances automatically, so it’s easier to ssh into them later.

2. Create EC2 instances

This step is similar to creating EC2 instances for any other type of purpose.

When creating those instances, make sure to select the VPC created in the previous step.

Mentally mark one of the instances as swarm manager, the rest of them will be regular nodes.

Note: choose ubuntu instead of amazon linux distribution.
The amazon linux distribution has problems with docker 1.12, the version that has built in support for docker swarm. 1.12 is not available in amazon linux RPM yet.
And it also lacks support for aufs, which is recommended by docker.

Make sure to open port 2376 insecurity group, this is the default port that docker-machine uses to provision.

3. Add ssh public key to the newly created EC2 instances

In order to access the EC2 instances, the public key of the machine from which the provisioning will happen need to be added to the target machine.

This is done by ssh into the EC2 instances, and then edit [User Home Dir]/.ssh/authorized_keys file to add your public key into it.

This will be needed by the docker-machine create command later.

4. Create ELB

The reason to create ELB is that AWS has a limit on how many elastic ips each account could have, the default is 5, which could be easily used up.

So in order for the swarm to be available via a constant address, an ELB is created to provide that constant url.

This is also why in the first step, there need to be 2 subnets, it’s required by ELB.

When creating the ELB, make sure TCP port 22 and 2376 are forwarded to the target EC2 instance. 22 is for ssh, 2376 is for docker remote communication.
And also, make sure to choose classic ELB instead of the new one. The classic one allows TCP forwarding, the new one only supports http and https.

5. Enable health check

ELB only forwards to a target machine if the target is considered “healthy”.
And ELB determines the health of a target by pinging it.

So, in the EC2 instance chosen as the swarm manager, start apache2 service at port 80(or any other port you may prefer).
Then in ELB settings, set it to ping that port.

For OpenLMIS the Nginx container starts itself automatically after the system is rebooted, so this ensures that ELB will start forwarding immediately if the instance reboots.

6. Provision all EC2 instances

Use this command:

docker-machine create --driver generic --generic-ip-address=[ELB Url] --generic-ssh-key ~/.ssh/id_rsa --generic-ssh-user ubuntu name1

to provision the swarm manager.

Note: the –driver flag has support for AWS. But the intention to explicitly not use it is to make sure this provision step could apply to other host environments as well, not just AWS hosted machines.

The –generic-ip-address flag needs to be followed by the ip of ec2 instance(for the swarm manager, it should be the ELB Url).

The –generic-ssh-key flag needs to be followed private key, whose public key pair should have already been added in step 2.

The –generic-ssh-user flag needs to be followed by the user name, in the case of Ubuntu EC2 instances, the default user name is ubuntu.

Lastly, supply a name for the docker machine.

Do this for all the EC2 instances, to make sure docker is installed on all of them.
(When doing this for the none manager nodes, the –generic-ip-address flag should be followed by their public ip that was automatically assigned, since ELB only forwards traffic to the manager node.)

7. Start swarm

Choose one of the EC2 instances as the swarm manager by:

eval $(docker-machine env [name of the chosen one])
(the name in the [] should be one of the names used in the previous step)

Now your local docker command is pointing at the remote docker daemon, run:

docker swarm init

Then follow its console output to join the rest of the EC2 instances into the swarm.
(it could be done by switching docker-machine env, or by using the -H flag of docker, the former is easier)

Since all the swarm node are in the same VPC, they can talk to each other by private ips which are static inside the VPC.
The swarm will regroup it self and maintain the manager-regular node structure even after EC2 instances are rebooted.

8. Allow Jenkins to access swarm manager

In order for Jenkins to continuously deploy to the swarm, it needs access to the swarm manager.

In step 3, when the swarm manager EC2 instance was being provisioned. The docker-machine created some certificate files behind the scene.

Those files should be in the machine that the provision command was issued(not the machine that was being provisioned), under:

[User Home Dir]/.docker/machine/machines/[name of the swarm manager]

Those files need to be copied to jenkins.

In a Jenkins deployment job, at the start of its build script, add:

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://[ELB Url that forwards to Swarm manager]"

export DOCKER_CERT_PATH="[path to the dir that contains certs]"

This will make following docker commands use the remote daemon, not the local one.

Now, Jenkins should be able to access and deploy to the swarm.

Node: Jenkins would only need access to the swarm manager, the other nodes are managed by the swarm manager. Jenkins does not need direct access to them.

How to provision a docker swarm for deployment in AWS (With Elastic IP)

1. Create EC2 instances

This step is similar to creating EC2 instances for any other type of purpose.

Mentally mark one of the instances as swarm manager, the rest of them will be regular nodes.
Assign an elastic ip to the manager node.

Note: choose ubuntu instead of amazon linux distribution.
The amazon linux distribution has problems with docker 1.12, the version that has built in support for docker swarm. 1.12 is not available in amazon linux RPM yet.
And it also lacks support for aufs, which is recommended by docker.

Make sure to open port 2376, this is the default port that docker-machine uses to provision. And make sure they have auto assigned public ip(not elastic ip) so you can ssh into them.

2. Add ssh public key to the newly created EC2 instances

In order to access the EC2 instances, the public key of the machine from which the provisioning will happen need to be added to the target machine.

This is by ssh into the EC2 instances, and then edit [User Home Dir]/.ssh/authorized_keys file to add your public key into it.

3. Provision all EC2 instances

With this command:

docker-machine create --driver generic --generic-ip-address=*.*.*.* --generic-ssh-key ~/.ssh/id_rsa --generic-ssh-user ubuntu name1

Note: the –driver flag has support for AWS. But the intention to explicitly not use it is to make sure this provision guide could apply to any host machine, not just AWS hosted machines.

The –generic-ip-address flag needs to be followed by the ip of ec2 instance. For the manager node, use the elastic ip, for the others, use the temp ips assigned by aws.

The –generic-ssh-key flag needs to be followed private key, whose public key pair should have already been added in step 2.

The –generic-ssh-user flag needs to be followed by the user name, in the case of Ubuntu EC2 instances, the default user name is ubuntu.

Lately, supply a name for the docker machine.

Do this for all the EC2 instances, to make sure docker is installed on all of them.

4. Start swarm

Choose one of the EC2 instances as the swarm manager by:

eval $(docker-machine env [name of the chosen one])
(the name in the [] should be one of the names used in the previous step)

Now your local docker command is pointing at the remote docker daemon, run:

docker swarm init

Then follow its console output to join the rest of the EC2 instances into the swarm.
(it could be done by switching docker-machine env, or by using the -H flag of docker, the former is easier)

5. Allow Jenkins to access swarm manager

In order for Jenkins to continuously deploy to the swarm, it needs access to the swarm manager.

In step 3, when the swarm manager EC2 instance was being provisioned. The docker-machine created some certificate files behind the scene.

Those files should be in the machine that the provision command was issued(not the machine that was being provisioned), under:

[User Home Dir]/.docker/machine/machines/[name of the swarm manager]

Those files need to be copied to jenkins(if the provision was done on Jenkins, then there is no need to copy).

In a Jenkins deployment job, at the start of its build script, add:

export DOCKER_TLS_VERIFY="1"

export DOCKER_HOST="tcp://[ip of the swarm manager]"

export DOCKER_CERT_PATH="[path to the dir that contains certs]"

This will make following docker commands use the remote daemon, not the local one.

Now, Jenkins should be able to access and deploy to the swarm.

Node: Jenkins would only need access to the swarm manager, the other nodes are managed by the swarm manager. Jenkins does not need direct access to them.

Deployment Environments

Scripts in this directory are meant to be ran in Jenkins.

Overview

	shared/ contains scripts for the Jenkins job(s):
	init_env.sh is run in Jenkins to copy the docker environment files (has secure credentials) from JENKINS_HOME/credentials/ to the current job’s workspace

	pull_images.sh always pulls/refreshes the infrastructure images (e.g. db, logs, etc), and then at the end will pull the image for the service that the Jenkins job is attempting to deploy (e.g. requistion, auth, referencedata, etc).

	restart.sh is paramartized by Jenkins to either keep or wipe volumes (e.g. database and logging volumes). When run this brings the deployed reference distribution down, and then back up. After it’s brought up, the nginx.tmpl file is copied directly into the running nginx container just started.

	nginx.tmpl is the override of the nginx template for docker and proxying - this is a copy from openlmis-ref-distro [http://github.com/openlmis/openlmis-ref-distro]. See restart.sh for how it’s used.

	test_env has a compose file which is the Reference distribution, and a script for Jenkins to kick everything off.

	uat_env has a compose file which is the Reference distribution, and a script for Jenkins to kick everything off.

	demo_env has a compose file which is the latest stable version of the Reference distrubution, and a script for Jenkins to kick everything off.

Local Usage

These scripts won’t work out of the box in a dev’s local machine, to make them work, you need a few files that are present in Jenkins but not in your local clone of this repo:

	The .env file

This file is present in Jenkins. It is copied to the workspace of a deployment job(either Jenkins slave or master) every time that job is ran.

This file is not included in this repo because the db credentials could be different for different deployment environments. The default .env file that is used during development and CI is open in github, making it not suitable for deployment purposes.

	The cert files for remotely controlling docker daemon deployment target

These files should not be included in this public repo for obvious reasons.

Similar to the .env file, they are also present in Jenkins and copied to a deployment job’s workspace(either Jenkins slave or master) every time it is ran.

To get these files, you need to be able to ssh to the Jenkin’s host instance.

It’s not recommended that you connect to the remote deployment environments, however if you have to:

	pull the remote cert files to a local directory. They are currently located under JENKINS_HOME/credentials/ in the Host directories. JENKINS_HOME would currently be /var/lib/jenkins.

	With the above cert files, you could control the remote docker machine by copying the certs to a local certs/ directory, and then running the following in your shell:

export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://<path-to-elb-of-docker-host>:2376"
export DOCKER_CERT_PATH="${PWD}/certs"

e.g. a current elb path for test is elb-test-env-swarm-683069932.us-east-1.elb.amazonaws.com

After this, running docker commands in your shell will be ran against the remote machine. e.g. docker inspect, logs, etc

How to backup persisted data?

if using ref distro’s included db container

	ssh into the docker host that you want, either test env or UAT env. Or use the technique above to connect your docker client to the remote host as needed

	run this command

docker exec -t [PostgresContainerName] /usr/lib/postgresql/9.4/bin/pg_dumpall -c -U [DBUserName] > [DumpFileName].sql

PostgresContainerName is usually testenv_db_1 or uatenv_db1, you can use docker ps to find out.
DBUserName is the one that was specified in the .env file, it’s usually just “postgres”.
DumpFileName is the file name where you want the back up to be stored in the host machine.

using Amazon’s RDS

RDS provides a number of desirable features that are more ideal for production environments, including automated backups. To backup and
restore the OpenLMIS database when using RDS, follow Amazon’s documentation: http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_CommonTasks.BackupRestore.html

RDS configuration

Setting up PostGIS for RDS

If you want to add PostGIS support to your database you need to do some setting up. Amazon provides
a great guide on how to do it under this link [http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.PostGIS]. Make sure to execute those instructions in the database containing OpenLMIS schemas, rather than postgres. You may also need to set correct search paths to the schemas you are installing the extensions in and reconnect to the database, depending on the way you are installing them.

Adding UUID extension on RDS

Some services require the uuid-ossp extension in order to randomly generate UUIDs in SQL. In
order to ensure OpenLMIS works properly with RDS, you may need to run the following command to
install the extension:

CREATE EXTENSION "uuid-ossp";

Versioning and Releasing

Micro-Services are Versioned Independently

OpenLMIS version 3 introduced a micro-services architecture where each component is versioned and
released independently. In addition, all the components are packaged together into a Reference
Distribution. When we refer to OpenLMIS 3.X.Y, we are talking about a release of the Reference
Distribution, called the ref-distro in GitHub [https://github.com/OpenLMIS/openlmis-ref-distro].
The components inside ref-distro 3.X.Y have their own separate version numbers which are listed on
the Release Notes.

The components are each semantically versioned [http://semver.org/], while the ref-distro has
“milestone” releases that are conducted roughly quarterly (every 3 months we release 3.2, 3.3, etc).
Each ref-distro release includes specific versions of the other components, both service components
and UI components.

Where We Publish Releases

All OpenLMIS source code is available on GitHub, and the components have separate repositories.
Releases are tagged on GitHub for all components as well as the ref-distro. Releases of some
components, such as the service components and UI components, are also published to Docker Hub as
versioned docker images. In addition, we publish releases of the service utility
library [https://github.com/OpenLMIS/openlmis-service-util] to Maven.

Release Numbering

Version 3 components follow the Semantic Versioning [http://semver.org/] standard:

	Patch releases with bug fixes, small changes and security patches will come out on an
as-needed schedule (1.0.1, 1.0.2, etc). Compatibility with past releases under the Major.Minor
is expected.

	Minor releases with new functionality will be backwards-compatible (1.1, 1.2, 1.3, etc).
Compatibility with past releases under the same Major number is expected.

	Major releases would be for non-backwards-compatible API changes. When a new major version
of a component is included in a Reference Distribution release, the Release Notes will document
any migration or upgrade issues.

The Version 3 Reference Distribution follows a milestone release schedule with quarterly releases.
Release Notes for each ref-distro release will include the version numbers of each component
included in the distribution. If specific components have moved by a Minor or Major version number,
the Release Notes will describe the changes (such as new features or any non-backwards-compatible
API changes or migration issues).

Version 2 also followed the semantic versioning standard.

Goals

Predictable versioning is critical to enable multiple country implementations to share a common
code base and derive shared value. This is a major goal of the 3.0 Re-Architecture. For example,
Country A’s implementation might fix a bug or add a new report, they would contribute that code
to the open source project, and Country B could use it; and Country B could contribute something
that Country A could use. For this to succeed, multiple countries using the OpenLMIS version 3
series must be upgrading to the latest Patch and Minor releases as they become available. Each
country shares their bug fixes or new features with the open source community for inclusion in the
next release.

Pre-Releases

Starting with version 3, OpenLMIS supports pre-releases following the Semantic Versioning standard.

Currently we suggest the use of beta releases. For example, 3.0 Beta is: 3.0.0-beta.

Note: the use of the hyphen consistent with Semantic Versioning. However a pre-release SHOULD NOT
use multiple hyphens. See the note in Modifiers on why.

Modifiers

Starting with version 3, OpenLMIS utilizes build modifiers to distinguish releases from intermediate
or latest builds. Currently supported:

Modifier: SNAPSHOT
Example: 3.0.0-beta-SNAPSHOT
Use: The SNAPSHOT modifier distinguishes this build as the latest/cutting edge available. It’s
intended to be used when the latest changes are being tested by the development team and should not
be used in production environments.

Note: that there is a departure with Semantic Versioning in that the (+) signs are not used as a
delimiter, rather a hyphen (-) is used. This is due to Docker Hub not supporting the use of plus
signs in the tag name.

For discussion on this topic, see this
thread [https://groups.google.com/forum/#!topic/openlmis-dev/cDV42HOdvCI]. The 3.0.0 semantic
versioning and schedule were also discussed at the Product Committee meeting on February 14,
2017 [https://openlmis.atlassian.net/wiki/display/OP/February+14+2017].

We Prefer Coordination over Branching

Because each component is independently, semantically versioned, the developers working on that
component need to coordinate so they are working towards the same version (their next release).

Each component’s repository has a version file (gradle.properties or version.properties) that
states which version is currently being developed. By default, we expect components will be working
on the master branch towards a Patch release. The developers can coordinate any time they are ready
to work on features (for a Minor release).

If developers propose to break with past API compatibility and make a Major release of the
component, that should be discussed on the Dev
Forum [https://groups.google.com/forum/#!forum/openlmis-dev]. They should be ready to articulate a
clear need, to evaluate other options to avoid breaking backwards-compatibility, and to document a
migration path for all existing users of the software. Even if the Dev Forum and component lead
decide to release a Major version, we still require automated schema migrations (using Flyway) so
existing users will have their data preserved when they upgrade.

Branching in git is discouraged. OpenLMIS does not use git-flow or a branching-based workflow. In
our typical workflow, developers are all contributing on the master branch to the next release of
their component. If developers need to work on more than one release at the same time, then they
could use a branch. For example, if the component is working towards its next Patch, such as
1.0.1-SNAPSHOT, but a developer is ready to work on a big new feature for a future Minor release,
that developer may choose to work on a branch. Overall, branching is possible, but we prefer to
coordinate to work together towards the same version at the same time, and we don’t have a
branch-driven workflow as part of our collaboration or release process.

Code Reviews and Pull Requests

We expect all code committed to OpenLMIS receives either a review from a second person or goes
through a pull request workflow on GitHub. Generally, the developers who are dedicated to working
on OpenLMIS itself have commit access in GitHub. They coordinate in Slack, they plan work using
JIRA tickets and sprints, and during their ticket workflow a code review is conducted. Code should
include automated tests, and the ticket workflow also includes a human Quality Assurance (QA) step.

Any other developers are invited to contribute to OpenLMIS using Pull Requests in GitHub at any
time. This includes developers who are implementing, extending and customizing OpenLMIS for
different local needs.

For more about the coding standards and how to contribute, see contributionGuide.md.

Future Strategies

As the OpenLMIS version 3 installation base grows, we expect that additional strategies will be
needed so that new functionality added to the platform will not be a risk or a barrier for existing
users. Feature Toggles is one strategy the technical community is considering.

Rolling a Release

Below is the process used for creating and publishing a release of each component as well as the
Reference Distribution (OpenLMIS 3.X.Y).

Goals

What’s the purpose of publishing a release? It gives us a specific version of the software for the
community to test drive and review. Beta releases will be deployed with demo data to the UAT site
uat.openlmis.org [http://uat.openlmis.org]. That will be a public, visible URL that will stay the
same while stakeholders test drive it. It will also have demo data and will not be automatically
wiped and updated each time a new Git commit is made.

Prerequisites

Before you release, make sure the following are in place:

	Demo data and seed data: make sure you have demo data that is sufficient to demonstrate the
features of this release. Your demo data might be built into the repositories and used in the
build process OR be prepared to run a one-time database load script/command.

	Features are completed for this release and are checked in.

	All automated tests pass.

	Documentation is ready. For components, this is the CHANGELOG.md file, and for the ref-distro
this is a Release Notes page in the wiki.

Releasing a Component (or Updating the Version SNAPSHOT)

Each component is always working towards some future release, version X.Y.Z-SNAPSHOT. A component
may change what version it is working towards, and when you update the serviceVersion of that
component, the other items below need to change.

These steps apply when you change a component’s serviceVersion (changing which -SNAPSHOT the
codebase is working towards):

	Within the component, set the serviceVersion property in the gradle.properties file to
the new -SNAPSHOT you’ve chosen.
	See Step 3 below for details.

	Update openlmis-ref-distro to set docker-compose.yml to use the new -SNAPSHOT this
component is working towards.
	See Step 5 below for details.

	Use a commit message that explains your change. EG, “Upgrade to 3.1.0-SNAPSHOT of
openlmis-requisition component.”

	Update openlmis-deployment to set each docker-compose.yml file in the deployment/ folder
for the relevant environments, probably uat_env/, test_env/, but not demo_env/
	See Step 7 below for details.

	Similar to above, please include a helpful commit message. (You do not need to tag this repo
because it is only used by Jenkins, not external users.)

	Update openlmis-contract-tests to set each docker-compose...yml file that includes your
component to use the new -SNAPSHOT version.
	Similar to the previous steps, see the lines under “services:” and change its version to the new
snapshot.

	You do not need to tag this repo. It will be used by Jenkins for subsequent contract test runs.

	(If your component, such as the openlmis-service-util library, publishes to Maven, then other
steps will be needed here.)

Releasing the Reference Distribution (openlmis-ref-distro)

When you are ready to create and publish a release (Note that version modifiers should not be used
in these steps - e.g. SNAPSHOT):

	Select a tag name such as ‘3.0.0-beta’ based on the numbering guidelines above.

	The service utility library should be released prior to the Services. Publishing to the central
repository may take some time, so publish at least a few hours before building and publishing the
released Services:
	Update the serviceVersion of GitHub’s openlmis-service-util

	Check Jenkins built it successfully

	At Nexus Repository Manager [https://oss.sonatype.org/], login and navigate to Staging
Repositories. In the list scroll until you find orgopenlmis-NNNN. This is the staged
release.

	Close the repository, if this succeeds, release it. More
information [http://central.sonatype.org/pages/releasing-the-deployment.html].

	Wait 1-2 hours for the released artifact to be available on Maven Central. Search here to
check: https://search.maven.org/

	In each OpenLMIS Service’s build.gradle, update the dependency version of the library to point
to the released version of the library (e.g. drop ‘SNAPSHOT’)

	In each service, set the serviceVersion property in the gradle.properties file to the
version you’ve chosen. Push this to GitHub, then log on to GitHub and create a release tagged
with the same tag. Note that GitHub release tags should start with the letter “v”, so
‘3.0.0-beta’ would be tagged ‘v3.0.0-beta’. It’s safest to choose a particular commit to use as
the Target (instead of just using the master branch, default). Also, when you create the version
in GitHub check the “This is a pre-release” checkbox if indeed that is true. Do this for each
service/UI module in the project, including the API services and the AngularJS UI repo (note: in
that repo, the file is called version.properties, not gradle.properties). DON’T update the
Reference Distribution yet.
	Do we need a release branch? No, we do not need a release branch, only a tag. If there are any
later fixes we need to apply to the 3.0 Beta, we would issue a new beta release (eg, 3.0 Beta
R1) to publish additional, specific fixes.

	Do we need a code freeze? We do not need a “code freeze” process. We will add the tag in Git,
and everyone can keep committing further work on master as usual. Updates to master will be
automatically built and deployed at the Test site [http://test.openlmis.org], but not the UAT
site [http://uat.openlmis.org].

	Confirm that your release tags appear in GitHub and in Docker Hub:
First, look under the Releases tab of each repository, eg
https://github.com/OpenLMIS/openlmis-requisition/releases.
Next, look under Tags in each Docker Hub repository. eg
https://hub.docker.com/r/openlmis/requisition/tags/ . You’ll need to wait for the Jenkins
jobs to complete and be successful so give this a few minutes.
Note: After tagging each service, you may also want to change the serviceVersion again so that
future commits are tagged on Docker Hub with a different tag. For example, after releasing
‘3.1.0’ you may want to change the serviceVersion to ‘3.1.1-SNAPSHOT’. You need to coordinate
with developers on your component to make sure everyone is working on ‘master’ branch towards
that same next release.
Finally, on Jenkins, identify which build was the one that built and published to Docker/Maven
the release. Press the Keep the build forever button.

	In openlmis-config, tag the most recent commit with the tag version (including the ‘v’).

	Update docker-compose.yml in openlmis-ref-distro with the release chosen
	For each of the services deployed as the new version on DockerHub, update the version in the
docker-compose.yml file to the version you’re releasing. See the lines under “services:” →
serviceName → “image: openlmis/requisition-refui:3.0.0-beta-SNAPSHOT” and change that last part
to the new version tag for each service.

	Commit this change and tag the openlmis-ref-distro repo with the release being made.
Note: There is consideration underway about using a git branch to coordinate the ref-distro
release.

	In order to publish the openlmis-ref-distro documentation to ReadTheDocs:
	Edit collect-docs.py to change links to pull in specific version tags of README files. In that
script, change a line like
urllib.urlretrieve("https://raw.githubusercontent.com/OpenLMIS/openlmis-referencedata/master/README.md", "developer-docs/referencedata.md")
to
urllib.urlretrieve("https://raw.githubusercontent.com/OpenLMIS/openlmis-referencedata/v3.0.0/README.md, "developer-docs/referencedata.md")

	To make your new version visible in the “version” dropdown on ReadTheDocs, it has to be set as
“active” in the admin settings on readthedocs (admin -> versions -> choose active versions). Once
set active the link is displayed on the documentation page (it is also possible to set default
version).

	Update docker-compose.yml in openlmis-deployment for the UAT deployment script with the release
chosen which is at https://github.com/OpenLMIS/openlmis-deployment/blob/master/deployment/uat_env/docker-compose.yml
	For each of the services deployed as a the new version on DockerHub, update the version in the
docker-compose.yml file to the version you’re releasing.

	Commit this change. (You do not need to tag this repo because it is only used by Jenkins, not
external users.)

	Kick off each -deploy-to-uat job on Jenkins
	Wait about 1 minute between starting each job

	Confirm UAT has the deployed service. e.g. for the auth service:
http://uat.openlmis.org/auth check that the version is the one chosen.

	Navigate to uat.openlmis.org and ensure it works

Once all these steps are completed and verified, the release process is complete. At this point you
can conduct communication tasks such as sharing the URL and Release Announcement to stakeholders.
Congratulations!

Index

OpenLMIS Auth-UI

This repository is the UI for the OpenLMIS Auth Service. [https://github.com/OpenLMIS/openlmis-auth]

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

> git clone https://github.com/OpenLMIS/openlmis-auth-ui.git
> cd openlmis-auth-ui/

	Create a .env file, which can be used to overwrite ‘sensitive’ settings from config.json

> touch .env

	Develop w/ Docker by running docker-compose run --service-ports auth-ui.

	You should now be in an interactive shell inside the newly created development environment, build the project with:

$ npm install // installs the NodeJS tools

$ grunt --serve
// or
$ grunt clean bower build --serve

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --serve --openlmisServerURL=<openlmis server url>.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports auth-ui

// Install dependencies
$ npm install
$ grunt clean
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --serve --openlmisServerURL=<openlmis server url>

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --serve --openlmisServerURL=<openlmis server url>

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run --entrypoint ./build.sh auth-ui
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

UI Components

This repository contains UI components that are used in other OpenLMIS-UI projects.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

> git clone https://github.com/OpenLMIS/openlmis-ui-components.git
> cd openlmis-ui-components/

	Create a .env file, which can be used to overwrite ‘sensitive’ settings from config.json

> touch .env

	Develop w/ Docker by running docker-compose run --service-ports ui-components.

	You should now be in an interactive shell inside the newly created development environment, build the project with:

$ npm install // installs the NodeJS tools

$ grunt --serve
// or
$ grunt clean bower build --serve

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --serve --openlmisServerURL=<openlmis server url>.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports requisition-ui

// Install dependencies
$ npm install
$ grunt clean
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --serve --openlmisServerURL=<openlmis server url>

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --serve --openlmisServerURL=<openlmis server url>

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run --entrypoint ./build.sh ui-components
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

OpenLMIS Service Template

This template is meant to be a starting point for developing a new
OpenLMIS 3.x Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

All other dependencies, such as Java, are delivered automatically via the Docker image. It is unnecessary to install them locally to run the service, though often helpful to do so for the sake of development. See the Tech section of openlmis/dev [https://hub.docker.com/r/openlmis/dev/] for a list of these optional dependencies.

Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-template-service.git <openlmis-your-service-name>

	Respectively change all instances of openlmis-template-service and
template-service within the project to openlmis-your-service-name and
your-service-name.

	Change all instances of the default version number (“0.0.1”) in the project to your
version number.

	Change the gradle build file to add any dependencies
(e.g. JPA, PostgreSQL).

	Add Java code to the template.

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd <openlmis-your-service-name>
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports <your-service-name>.
See Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development
environment, start the Service with: gradle bootRun

	Go to http://<yourDockerIPAddress>:8080/ to see the service name
and version. Note that you can determine yourDockerIPAddress by running docker-machine ip.

	Go to http://<yourDockerIPAddress>:8080/api/ to see the APIs.

[bookmark: building]Building & Testing

Gradle is our usual build tool. This template includes common tasks
that most Services will find useful:

	clean to remove build artifacts

	build to build all source. build, after building sources, also runs unit tests. Build will be successful only if all tests pass.

	generateMigration -PmigrationName=<yourMigrationName> to create a
“blank” database migration file. The file
will be generated under src/main/resources/db/migration. Put your
migration SQL into it.

	test to run unit tests

	integrationTest to run integration tests

	sonarqube to execute the SonarQube analysis.

The test results are shown in the console.

While Gradle is our usual build tool, OpenLMIS v3+ is a collection of
Independent Services where each Gradle build produces 1 Service.
To help work with these Services, we use Docker to develop, build and
publish these.

See Developing with Docker.

[bookmark: devdocker]Developing with Docker

OpenLMIS utilizes Docker to help with development, building, publishing
and deployment of OpenLMIS Services. This helps keep development to
deployment environments clean, consistent and reproducible and
therefore using Docker is recommended for all OpenLMIS projects.

To enable development in Docker, OpenLMIS publishes a couple Docker
Images:

	openlmis/dev [https://hub.docker.com/r/openlmis/dev/] - for Service
development. Includes the JDK & Gradle plus common build tools.

	openlmis/postgres [https://hub.docker.com/r/openlmis/postgres/] - for
quickly standing up a shared PostgreSQL DB

In addition to these Images, each Service includes Docker Compose
instructions to:

	standup a development environment (run Gradle)

	build a lean image of itself suitable for deployment

	publish its deployment image to a Docker Repository

[bookmark: devenv]Development Environment

Launches into shell with Gradle & JDK available suitable for building
Service. PostgreSQL connected suitable for testing. If you run the
Service, it should be available on port 8080.

Before starting the development environment, make sure you have a .env file as outlined in the
Quick Start instructions.

> docker-compose run --service-ports <your-service-name>
$ gradle clean build
$ gradle bootRun

[bookmark: buildimage]Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the service.

Before building the deployment image, make sure you have a .env file as outlined in the Quick
Start instructions.

> docker-compose -f docker-compose.builder.yml run builder
> docker-compose -f docker-compose.builder.yml build image

Publish to Docker Repository

TODO

[bookmark: dockerfiles]Docker’s file details

A brief overview of the purpose behind each docker related file

	Dockerfile: build a deployment ready image of this service
suitable for publishing.

	docker-compose.yml: base docker-compose file. Defines the
basic composition from the perspective of working on this singular
vertical service. These aren’t expected to be used in the
composition of the Reference Distribution.

	docker-compose.override.yml: extends the docker-compose.yml
base definition to provide for the normal usage of docker-compose
inside of a single Service: building a development environment.
Wires this Service together with a DB for testing, a gradle cache
volume and maps tomcat’s port directly to the host. More on how this
file works: https://docs.docker.com/compose/extends/

	docker-compose.builder.yml: an alternative docker-compose file
suitable for CI type of environments to test & build this Service
and generate a publishable/deployment ready Image of the service.

	docker-compose.prod.yml: Docker-compose file suitable for production.
Contains nginx-proxy image and virtual host configuration of each service.

[bookmark: nginx]Running complete application with nginx proxy

	Enter desired VIRTUAL_HOST for each service in the docker-compose.prod.yml file.

	Start up containers

> docker-compose -f docker-compose.yml -f docker-compose.prod.yml up

	The application should be available at port 80.

[bookmark: logging]Logging

Logging is implemented using SLF4J in the code, Logback in Spring Boot, and routed to an
external Syslog server. There is a default configuration XML (logback.xml) in the resources
folder. To configure the log level for the development environment, simply modify the logback.xml
to suit your needs.

Configuring log level for a production environment is a bit more complex, as the code has already
been packaged into a Spring Boot jar file. However, the default log configuration XML can be
overridden by setting the Spring Boot logging.config property to an external logback.xml when the
jar is executed. The container needs to be run with a JAVA_OPTS environment variable set to a
logback.xml location, and with a volume with the logback.xml mounted to that location. Some docker
compose instructions have been provided to demonstrate this.

	Build the deployment image. (See Build Deployment Image)

	Get a logback.xml file and modify it to suit your log level configuration.

	Modify docker-compose.builder.yml to point to your logback.xml location.
a. Under volumes, where it shows two logback.xml locations separated by a colon, change the
location before the colon.

	Run the command below.

> docker-compose -f docker-compose.builder.yml run --service-ports template-service

[bookmark: internationalization]Internationalization (i18n)

Internationalization is implemented by the definition of two beans found in the Application
class, localeResolver and messageSource. (Alternatively, they could be defined in an application
context XML file.) The localeResolver determines the locale, using a cookie named lang in the
request, with en (for English) as the default. The messageSource determines where to find the
message files.

Note there is a custom message source interface, ExposedMessageSource, with a corresponding class
ExposedMessageSourceImpl. These provide a method to get all the messages in a locale-specific
message file.

See the MessageController class for examples on how to get messages.

Additionally, Transifex [https://www.transifex.com/] has been integrated into the development and
build process. In order to sync with the project’s resources in Transifex, you must provide
values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the
sync_transifex.sh script. This will upload your source messages file to the Transifex project
and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

[bookmark: debugging]Debugging

To debug the Spring Boot application, use the --debug-jvm option.

$ gradle bootRun --debug-jvm

This will enable debugging for the application, listening on port 5005, which the container has
exposed. Note that the process starts suspended, so the application will not start up until the
debugger has connected.

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

The following environment variables are common to our services. They can be set either directly in compose files for images or provided as an environment file. See docker-compose.yml [https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/docker-compose.yml] in the reference distribution for example usage. Also take a look at the sample .env file [https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env] we provide.

	BASE_URL - The base url of the OpenLMIS distribution. Will be used in generated links pointing to this distribution, as well as for communication between services. Each service should communicate with others using BASE_URL as the base in order to avoid direct communication, which might not work in more complex deployments. Services should also use this variable if they wish to generate a link to the application. This should be an url, for example: https://example.openlmis.org

	VIRTUAL_HOST - This is used by the nginx server as the virtual host under which the services are made avialble. This should be a host, for example: example.openlmis.org

	CONSUL_HOST - Identifies the IP address or DNS name of the Consul server. Set this to the host or IP under which the distribution is available and Consul listens for connections. Services should register with Consul under this address. This should be a host or an IP, for example 8.8.8.8.

	CONSUL_PORT - The port used by the Consul server - services should use this port to register with Consul. This should be a port number, for example 8500. 8500 is used by default.

	REQUIRE_SSL - Whether HTTPS is required. If set to true, nginx will redirect all incoming HTTP connections to HTTPS. By default SSL will not be required - either leave it blank or set to false if you wish to allow HTTP connections.

	LOCALE - Default localized system language. It will be applied to all running services, if this variable is missing default “en” value will be used.

	CORS_ALLOWED_ORIGINS - Comma-separated list of origins that are allowed, for example: https://test.openlmis.org,http://some.external.domain. * allows all origins. Leave empty to disable CORS.

	CORS_ALLOWED_METHODS - Comma-separated list of HTTP methods that are allowed for the above origins.

These variables are used by services for their connection to the database (none of these have defaults):

	DATABASE_URL - The JDBC url under which the database is accessible. Our services use jdbc:postgresql://db:5432/open_lmis for connecting to the PostgreSQL database running in a container.

	POSTGRES_USER - The username of the database user that the services should use. This variable is also used by our PostgreSQL container to create a user.

	POSTGRES_PASSWORD - The password of the database user that the services should use. This variable is also used by our PostgreSQL container to create a user.

These variables are used by our builds in order to integrate with the Transifex [https://www.transifex.com/] translation management system:

	TRANSIFEX_USER - The username to use with Transifex for updating translations.

	TRANSIFEX_PASSWORD - The password to use with Transifex for updating translations.

OpenLMIS Reference UI

The OpenLMIS Reference UI is the user interface for the OpenLMIS Reference Distribution. This user interface is designed to be a single page web application that is optimized for offline and low-bandwidth environments.

Multiple UI modules are compiled together with the OpenLMIS dev-ui to create the OpenLMIS Reference-UI. UI modules included in the OpenLMIS Reference-UI are:

	OpenLMIS Auth UI [https://github.com/OpenLMIS/openlmis-auth-ui]

	OpenLMIS Fulfillment UI [https://github.com/OpenLMIS/openlmis-fulfillment-ui]

	OpenLMIS Reference Data UI [https://github.com/OpenLMIS/openlmis-referencedata-ui]

	OpenLMIS Report UI [https://github.com/OpenLMIS/openlmis-report-ui]

	OpenLMIS Requisition UI [https://github.com/OpenLMIS/openlmis-requisition-ui]

	OpenLMIS UI Components [https://github.com/OpenLMIS/openlmis-ui-components]

	OpenLMIS UI Layout [https://github.com/OpenLMIS/openlmis-ui-layout]

OpenLMIS-UI Layout

This is the OpenLMIS-UI Layout repository which defines the basic layout and styles that are used through out the OpenLMIS-UI.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

> git clone https://github.com/OpenLMIS/openlmis-ui-layout.git
> cd openlmis-ui-layout/

	Create a .env file, which can be used to overwrite ‘sensitive’ settings from config.json

> touch .env

	Develop w/ Docker by running docker-compose run --service-ports ui-layout.

	You should now be in an interactive shell inside the newly created development environment, build the project with:

$ npm install // installs the NodeJS tools

$ grunt --serve
// or
$ grunt clean bower build --serve

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --serve --openlmisServerURL=<openlmis server url>.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports requisition-ui

// Install dependencies
$ npm install
$ grunt clean
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --serve --openlmisServerURL=<openlmis server url>

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --serve --openlmisServerURL=<openlmis server url>

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run --entrypoint ./build.sh ui-layout
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

Reference Data ERD

ERD schema of Reference Data service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-referencedata-erd-generation/764/artifact/erd-referencedata.zip]

CCE ERD

ERD schema of CCE service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-cce-erd-generation/116/artifact/erd-cce.zip]

OpenLMIS Stock Management Service

This service allows users to create/update stock cards and stock movements.

Prerequisites

	Java 1.8+

	Docker 1.11+

	Docker Compose 1.6+

All other dependencies, such as Java, are delivered automatically via the Docker image. It is unnecessary to install them locally to run the service, though often helpful to do so for the sake of development. See the Tech section of openlmis/dev [https://hub.docker.com/r/openlmis/dev/] for a list of these optional dependencies.

Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-stockmanagement.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports stockmanagement.
See Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development
environment, start the Service with: gradle bootRun

	Go to http://<yourDockerIPAddress>:8080/ to see the service name
and version. Note that you can determine yourDockerIPAddress by running docker-machine ip.

	Go to http://<yourDockerIPAddress>:8080/stockmanagement/docs to see the APIs.

[bookmark: building]Building & Testing

Gradle is our usual build tool. This template includes common tasks
that most Services will find useful:

	clean to remove build artifacts

	build to build all source. build, after building sources, also runs unit tests. Build will be successful only if all tests pass.

	generateMigration -PmigrationName=<yourMigrationName> to create a
“blank” database migration file. The file
will be generated under src/main/resources/db/migration. Put your
migration SQL into it.

	test to run unit tests

	integrationTest to run integration tests

	sonarqube to execute the SonarQube analysis.

The test results are shown in the console.

While Gradle is our usual build tool, OpenLMIS v3+ is a collection of
Independent Services where each Gradle build produces 1 Service.
To help work with these Services, we use Docker to develop, build and
publish these.

See Developing with Docker.

[bookmark: devdocker]Developing with Docker

OpenLMIS utilizes Docker to help with development, building, publishing
and deployment of OpenLMIS Services. This helps keep development to
deployment environments clean, consistent and reproducible and
therefore using Docker is recommended for all OpenLMIS projects.

To enable development in Docker, OpenLMIS publishes a couple Docker
Images:

	openlmis/dev [https://hub.docker.com/r/openlmis/dev/] - for Service
development. Includes the JDK & Gradle plus common build tools.

	openlmis/postgres [https://hub.docker.com/r/openlmis/postgres/] - for
quickly standing up a shared PostgreSQL DB

In addition to these Images, each Service includes Docker Compose
instructions to:

	standup a development environment (run Gradle)

	build a lean image of itself suitable for deployment

	publish its deployment image to a Docker Repository

[bookmark: devenv]Development Environment

Launches into shell with Gradle & JDK available suitable for building
Service. PostgreSQL connected suitable for testing. If you run the
Service, it should be available on port 8080.

Before starting the development environment, make sure you have a .env file as outlined in the
Quick Start instructions.

> docker-compose run --service-ports stockmanagement
$ gradle clean build
$ gradle bootRun

[bookmark: buildimage]Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the service.

Before building the deployment image, make sure you have a .env file as outlined in the Quick
Start instructions.

> docker-compose -f docker-compose.builder.yml run builder
> docker-compose -f docker-compose.builder.yml build image

Publish to Docker Repository

TODO

[bookmark: dockerfiles]Docker’s file details

A brief overview of the purpose behind each docker related file

	Dockerfile: build a deployment ready image of this service
suitable for publishing.

	docker-compose.yml: base docker-compose file. Defines the
basic composition from the perspective of working on this singular
vertical service. These aren’t expected to be used in the
composition of the Reference Distribution.

	docker-compose.override.yml: extends the docker-compose.yml
base definition to provide for the normal usage of docker-compose
inside of a single Service: building a development environment.
Wires this Service together with a DB for testing, a gradle cache
volume and maps tomcat’s port directly to the host. More on how this
file works: https://docs.docker.com/compose/extends/

	docker-compose.builder.yml: an alternative docker-compose file
suitable for CI type of environments to test & build this Service
and generate a publishable/deployment ready Image of the service.

	docker-compose.prod.yml: Docker-compose file suitable for production.
Contains nginx-proxy image and virtual host configuration of each service.

[bookmark: nginx]Running complete application with nginx proxy

	Enter desired VIRTUAL_HOST for each service in the docker-compose.prod.yml file.

	Start up containers

> docker-compose -f docker-compose.yml -f docker-compose.prod.yml up

	The application should be available at port 80.

[bookmark: logging]Logging

Logging is implemented using SLF4J in the code, Logback in Spring Boot, and routed to an
external Syslog server. There is a default configuration XML (logback.xml) in the resources
folder. To configure the log level for the development environment, simply modify the logback.xml
to suit your needs.

Configuring log level for a production environment is a bit more complex, as the code has already
been packaged into a Spring Boot jar file. However, the default log configuration XML can be
overridden by setting the Spring Boot logging.config property to an external logback.xml when the
jar is executed. The container needs to be run with a JAVA_OPTS environment variable set to a
logback.xml location, and with a volume with the logback.xml mounted to that location. Some docker
compose instructions have been provided to demonstrate this.

	Build the deployment image. (See Build Deployment Image)

	Get a logback.xml file and modify it to suit your log level configuration.

	Modify docker-compose.builder.yml to point to your logback.xml location.
a. Under volumes, where it shows two logback.xml locations separated by a colon, change the
location before the colon.

	Run the command below.

> docker-compose -f docker-compose.builder.yml run --service-ports stockmanagement

[bookmark: internationalization]Internationalization (i18n)

Internationalization is implemented by the definition of two beans found in the Application
class, localeResolver and messageSource. (Alternatively, they could be defined in an application
context XML file.) The localeResolver determines the locale, using a cookie named lang in the
request, with en (for English) as the default. The messageSource determines where to find the
message files.

Note there is a custom message source interface, ExposedMessageSource, with a corresponding class
ExposedMessageSourceImpl. These provide a method to get all the messages in a locale-specific
message file.

See the MessageController class for examples on how to get messages.

Additionally, Transifex [https://www.transifex.com/] has been integrated into the development and
build process. In order to sync with the project’s resources in Transifex, you must provide
values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the
sync_transifex.sh script. This will upload your source messages file to the Transifex project
and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

[bookmark: debugging]Debugging

To debug the Spring Boot application, use the --debug-jvm option.

$ gradle bootRun --debug-jvm

This will enable debugging for the application, listening on port 5005, which the container has
exposed. Note that the process starts suspended, so the application will not start up until the
debugger has connected.

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

Steps to create test data for performance testing

	Log on to the server(ssh)

	Find container id of posgres: docker ps

	Go to DB
	docker exec -it [postgres container id] bash

	psql -U postgres

	\connect open_lmis

	Run the following sql
(You can change the number (1..100) to choose how many orderables to create)

CREATE EXTENSION IF NOT EXISTS "pgcrypto";
DO
do
BEGIN
FOR i IN 1..100 LOOP
 INSERT INTO referencedata.orderables(id, dispensingunit, fullproductname, packroundingthreshold, netcontent, code, roundtozero) VALUES
 (gen_random_uuid(), '10 tab strip', 'test' || i, 0, 1, 'c120' || i, 'false');
 INSERT INTO referencedata.program_orderables(id, active, displayorder, dosesperpatient, fullsupply, priceperpack, orderabledisplaycategoryid, orderableid, programid) VALUES
 (gen_random_uuid(), 'true', 0, 1, 'true', 5.20, '15b8ef1f-a5d6-42dd-95bf-bb68a4504e82', (select id from referencedata.orderables where fullproductname = 'test' || i), 'dce17f2e-af3e-40ad-8e00-3496adef44c3');
 INSERT INTO referencedata.facility_type_approved_products(id, emergencyorderpoint, maxperiodsofstock, minperiodsofstock, facilitytypeid, orderableid, programid) VALUES
 (gen_random_uuid(), 1, 3, 1.5, 'ac1d268b-ce10-455f-bf87-9c667da8f060', (select id from referencedata.orderables where fullproductname = 'test' || i), 'dce17f2e-af3e-40ad-8e00-3496adef44c3');
END LOOP;
END
do;

After execution of this sql, there should be 100 new orderables approved for program: “Famility planning” and facility type: “Health Center”.

	Find ‘create_stock_cards_and_stock_card_line_items.js’ in ‘perf_test’ directory of this repository.

Run npm install request --save in the directory that contains the js file.

Then use nodejs to run the js file.
node create_stock_cards_and_stock_card_line_items.js [url, for example: https://test.openlmis.org]

After execution of this js file, user: “srmanager1” will have access to 126 stock cards.

	Copy the following sql to the DB and run

	Make sure the number of j equals to the number of the orderables.

	You can change the number of i to choose how many stock card line items created for each stock card.

DO
do
BEGIN
FOR j IN 1..100 LOOP
FOR i IN 1..99 LOOP
INSERT INTO stockmanagement.stock_card_line_items(id, documentnumber, occurreddate, processeddate, quantity, userid, origineventid, stockcardid)
VALUES(gen_random_uuid(), 'Testit' || i, '2017-05-17 06:39:50.717','2017-05-17 06:40:14.155', 10, 'c994d1ea-47f7-435d-9d4d-42fb54197698', (select distinct origineventid from stockmanagement.stock_cards where facilityid='176c4276-1fb1-4507-8ad2-cdfba0f47445'), (select id from stockmanagement.stock_cards where orderableid in (select id from referencedata.orderables where fullproductname = 'test' || j)));
END LOOP;
END LOOP;
END
do;

After execution of this sql, there will be 100 stock card line items for each stock card.

	Now you can go to the web pages, log in as “srmanager1” and conduct performance tests.

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

OpenLMIS Stock Management UI Module

This repository is the UI for the OpenLMIS Stock Management Service. [https://github.com/OpenLMIS/openlmis-stockmanagement]

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-stockmanagement-ui.git

	Develop w/ Docker by running docker-compose run --service-ports stockmanagement-ui.

	You should now be in an interactive shell inside the newly created development environment, build the project with: npm install && grunt bower and then you can build and start it with grunt build --serve.

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --openlmisServerUrl=<openlmis server url> --serve.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports stockmanagement-ui

// Install dependencies
$ npm install
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --openlmisServerUrl=<openlmis server url> --serve

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --openlmisServerUrl=<openlmis server url> --serve

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run ./build.sh stockmanagement-ui
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

OpenLMIS Reference Data Service

This service contains all of the reference data for OpenLMIS 3.x.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-referencedata.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use [this one]
(https://github.com/OpenLMIS/openlmis-config/blob/master/.env). e.g.

cd openlmis-referencedata
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports referencedata. See
Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development environment,
start the Service with: gradle bootRun

	Go to http://localhost:8080/ to see the service name and version.

	Go to http://localhost:8080/api/ to see the APIs.

[bookmark: building]Building & Testing

Gradle is our usual build tool. This template includes common tasks
that most Services will find useful:

	clean to remove build artifacts

	build to build all source. build, after building sources, also runs unit tests. Build will
be successful only if all tests pass. NOTE: Build will not run integration tests.

	generateMigration -PmigrationName=<yourMigrationName> to create a “blank” database migration
file. The file will be generated under src/main/resources/db/migration. Put your migration SQL
into it.

	test to run unit tests

	integrationTest to run integration tests

	sonarqube to execute the SonarQube analysis.

A typical clean build & test command is: gradle clean build integrationTest.

The test results are shown in the console.

While Gradle is our usual build tool, OpenLMIS v3+ is a collection of Independent Services where
each Gradle build produces 1 Service. To help work with these Services, we use Docker to develop,
build and publish these.

See Developing with Docker.

[bookmark: devdocker]Developing with Docker

OpenLMIS utilizes Docker to help with development, building, publishing and deployment of
OpenLMIS Services. This helps keep development to deployment environments clean, consistent and
reproducible and therefore using Docker is recommended for all OpenLMIS projects.

To enable development in Docker, OpenLMIS publishes a couple Docker Images:

	openlmis/dev [https://hub.docker.com/r/openlmis/dev/] - for Service development. Includes the
JDK & Gradle plus common build tools.

	openlmis/postgres [https://hub.docker.com/r/openlmis/postgres/] - for quickly standing up a
shared PostgreSQL DB.

In addition to these Images, each Service includes Docker Compose instructions to:

	standup a development environment (run Gradle)

	build a lean image of itself suitable for deployment

	publish its deployment image to a Docker Repository

[bookmark: devenv]Development Environment

Launches into shell with Gradle & JDK available suitable for building Service. PostgreSQL
connected suitable for testing. If you run the Service, it should be available on port 8080.

Before starting the development environment, make sure you have a .env file as outlined in the
Quick Start instructions.

> docker-compose run --service-ports <your-service-name>
$ gradle clean build
$ gradle bootRun

[bookmark: buildimage]Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build servers for automated
building, testing and docker image generation of the service.

Before building the deployment image, make sure you have a .env file as outlined in the Quick
Start instructions.

> docker-compose -f docker-compose.builder.yml run builder
> docker-compose -f docker-compose.builder.yml build image

Publish to Docker Repository

TODO

[bookmark: dockerfiles]Docker’s file details

A brief overview of the purpose behind each docker related file

	Dockerfile: build a deployment ready image of this service suitable for publishing.

	docker-compose.yml: base docker-compose file. Defines the basic composition from the
perspective of working on this singular vertical service. These aren’t expected to be used in the
composition of the Reference Distribution.

	docker-compose.override.yml: extends the docker-compose.yml base definition to provide for
the normal usage of docker-compose inside of a single Service: building a development
environment. Wires this Service together with a DB for testing, a gradle cache volume and maps
tomcat’s port directly to the host.

	docker-compose.builder.yml: an alternative docker-compose file suitable for CI type of
environments to test & build this Service and generate a publishable/deployment ready Image of
the service.

	docker-compose.prod.yml: Docker-compose file suitable for production. Contains nginx-proxy
image and virtual host configuration of each service.

[bookmark: nginx]Running complete application with nginx proxy

	Enter desired VIRTUAL_HOST for each service in the docker-compose.prod.yml file.

	Start up containers

> docker-compose -f docker-compose.yml -f docker-compose.prod.yml up

	The application should be available at port 80.

[bookmark: logging]Logging

Logging is implemented using SLF4J in the code, Logback in Spring Boot, and routed to an external
Syslog server. There is a default configuration XML (logback.xml) in the resources folder. To
configure the log level for the development environment, simply modify the logback.xml to suit
your needs.

Configuring log level for a production environment is a bit more complex, as the code has already
been packaged into a Spring Boot jar file. However, the default log configuration XML can be
overridden by setting the Spring Boot logging.config property to an external logback.xml when the
jar is executed. The container needs to be run with a JAVA_OPTS environment variable set to a
logback.xml location, and with a volume with the logback.xml mounted to that location. Some docker
compose instructions have been provided to demonstrate this.

	Build the deployment image. (See Build Deployment Image)

	Get a logback.xml file and modify it to suit your log level configuration.

	Modify docker-compose.builder.yml to point to your logback.xml location.
a. Under volumes, where it shows two logback.xml locations separated by a colon, change the
location before the colon.

	Run the command below.

> docker-compose -f docker-compose.builder.yml run --service-ports template-service

[bookmark: internationalization]Internationalization (i18n)

Internationalization is implemented by the definition of two beans found in the Application
class, localeResolver and messageSource. (Alternatively, they could be defined in an application
context XML file.) The localeResolver determines the locale, using a cookie named lang in the
request, with en (for English) as the default. The messageSource determines where to find the
message files.

Note there is a custom message source interface, ExposedMessageSource, with a corresponding class
ExposedMessageSourceImpl. These provide a method to get all the messages in a locale-specific
message file.

See the MessageController class for examples on how to get messages.

Additionally, Transifex [https://www.transifex.com/] has been integrated into the development and
build process. In order to sync with the project’s resources in Transifex, you must provide
values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the
sync_transifex.sh script. This will upload your source messages file to the Transifex project
and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

[bookmark: debugging]Debugging

To debug the Spring Boot application, use the --debug-jvm option.

$ gradle bootRun --debug-jvm

This will enable debugging for the application, listening on port 5005, which the container has
exposed. Note that the process starts suspended, so the application will not start up until the
debugger has connected.

Demo Data

A basic set of demo data is included with this service, defined under ./demo-data/. This data may
be optionally loaded by using the demo-data Spring Profile. Setting this profile may be done by
setting the spring.profiles.active environment variable.

When building locally from the development environment, you may run:

$ export spring_profiles_active=demo-data
$ gradle bootRun

To see how to set environment variables through Docker Compose, see the
Reference Distribution [https://github.org/openlmis/openlmis-ref-distro]

Performance Testing Data

A generated, sufficiently-large set of data is defined in
./src/main/resources/db/performance-data/. This data set is meant for performance testing, which
helps answer questions such as:

	what happens to this operation when there are 10,000 Orderables / users / facilities?

	how many concurrent requests can we serve?

	what’s the network characteristic for clients on mobile connections?

This data set builds upon the demo data set and therefore must be loaded after demo-data is loaded.
To do so activate the performance-data Spring Profle after demo-data, for example:

$ export spring_profiles_active=demo-data,performance-data
$ gradle bootRun

Database Refresh

In order to improve performance on checking permissions, the database stores a set of right
assignments for all users. If the database has no assignments or incorrect assignments set in
this table, it may be necessary to refresh this table from time to time. A mechanism has been
created to allow these right assignments to be re-generated, by activating the refresh-db
Spring profile. For example:

$ export spring_profiles_active=demo-data,refresh-db
$ gradle bootRun

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

Audit Logging

Services use JaVers to log changes made throughout the system. The audits logs for individual resources
should be exposed via endpoints which look as follows:

/api/someResources/{id}/auditLog

Just as with other paginated endpoints, these requests may be filtered via page and size
query paramaters: /api/someResources?page=0&size=10

The returned log may additionally be filtered by author and changedPropertyName query paramaters.
The later specifies that only changes made by a given user should be returned, whereas the later dictates
that only changes related to the named property should be shown.

Each /api/someResources/{id}/auditLog endpoint should return a 404 error if and only if the specified {id} does not exist.
In cases where the resource id exists but lacks an associated audit log, an empty array representing the empty audit should be returned.

Within production services, the response bodies returned by these endpoints should correspond
to the JSON schema defined by auditLogEntryArray within /resources/api-definition.yaml. It is
recognized and accepted that this differs from the schema intended for use by other collections
throughout the system. Specifically, whereas other collections which support paginated requests are
expected to return pagination-related metadata (eg: “totalElements,” “totalPages”) within their
response bodies, the responses proffered by /auditLog endpoints do not retur pagination related data.

OpenLMIS Requisition Reference UI Module

This repository is the UI for the OpenLMIS Requisition Service. [https://github.com/OpenLMIS/openlmis-requisition]

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

> git clone https://github.com/OpenLMIS/openlmis-requisition-ui.git
> cd openlmis-requisition-ui/

	Create a .env file, which can be used to overwrite ‘sensitive’ settings from config.json

> touch .env

	Develop w/ Docker by running docker-compose run --service-ports requisition-ui.

	You should now be in an interactive shell inside the newly created development environment, build the project with:

$ npm install // installs the NodeJS tools

$ grunt --serve
// or
$ grunt clean bower build --serve

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --serve --openlmisServerURL=<openlmis server url>.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports requisition-ui

// Install dependencies
$ npm install
$ grunt clean
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --serve --openlmisServerURL=<openlmis server url>

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --serve --openlmisServerURL=<openlmis server url>

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run --entrypoint ./build.sh requisition-ui
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

Auth ERD

ERD schema of Auth service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-auth-erd-generation/239/artifact/erd-auth.zip]

 404: Not Found

OpenLMIS Fulfillment Service

This repository holds the files for the OpenLMIS Fulfillment Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-fulfillment.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-fulfillment
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports fulfillment.
See Developing w/ Docker. You should now be in an interactive shell inside
the newly created development environment.

	Run gradle build to build. After the build steps finish, you should see ‘Build Successful’.

	Start the service with gradle bootRun. Once it is running, you should see
‘Started Application in NN seconds’. Your console will not return to a prompt as long as
the service is running. The service may write errors and other output to your console.

	You must authenticate to get a valid access_token before you can use the service.
Follow the Security [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security]
instructions to generate a POST request to the authorization server at http://localhost:8081/.
You can use a tool like Postman [https://www.getpostman.com/] to generate the POST.
The authorization server will return an access_token which you must save for use on requests to
this OpenLMIS service. The token will expire with age, so be ready to do this step often.

	Go to http://localhost:8080/?access_token=<yourAccessToken> to see the service name and version.
Note: If localhost does not work, the docker container with the service running might not be
bridged to your host workstation. In that case, you can determine your Docker IP address by
running docker-machine ip and then visit http://<yourDockerIPAddress>:8080/.

	Go to http://localhost:8080/index.html?access_token=<yourAccessToken> to see the Swagger UI showing the API endpoints.
(Click ‘default’ to expand the list.)

	Use URLs of the form http://localhost:8080/api/*?access_token=<yourAccessToken> to hit
the APIs directly.

Stopping the Service

To stop the service (when it is running with gradle bootRun) use Control-C.

To clean up unwanted Docker containers, see the Docker Cheat Sheet [https://openlmis.atlassian.net/wiki/display/OP/Docker+Cheat+Sheet#DockerCheatSheet-Cleaningup:].

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

Security

See the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Demo Data

You can use a standard data set for demonstration purposes. To do so, first follow the Quick Start
until step 3 is done: https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/README.md#quickstart.
Then, before gradle bootRun, use gradle demoDataSeed. This will generate a sql input file under
./demo-data directory.

To insert this data into the database, finish the Quick Start steps,
and then outside of container’s interactive shell, run:
docker exec -i openlmisfulfillment_db_1 psql -Upostgres open_lmis < demo-data/input.sql

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

If you are using the hauptmedia/proftpd [https://hub.docker.com/r/hauptmedia/proftpd/] Docker image for testing fulfillment (like we do in our reference distribution), you can use the following variables to set the username and password for that server:

	FTP_USERNAME - the username of the FTP user.

	FTP_PASSWORD - the password of the FTP user.

Note: the fulfillment service does not use the variables above for setting up any connections - the configuration is kept in the database and managed through the appropriate endpoints.

OpenLMIS Authentication Service

This repository holds the files for OpenLMIS Authentication Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-auth.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-auth
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports auth.
See Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development
environment, start the Service with: gradle bootRun

	Go to http://<yourDockerIPAddress>:8080/ to see the service name
and version. Note that you can determine yourDockerIPAddress by running docker-machine ip.

	Go to http://<yourDockerIPAddress>:8080/api?access_token=<access_token_id> to see the APIs.
For additional info about security see the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

Service Design

See the Design document.

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Production by Spring Profile

By default when this service is started, it will clean it’s schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

The auth service also uses the following variables:

	TOKEN_DURATION - The period of inactivity in seconds after which authentication tokens will expire. For example set this to 900 in order to have tokens expire after 15 minutes of inactivity. The default value is 1800 (30 minutes).

Fulfillment ERD

ERD schema of Fulfillment service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-fulfillment-erd-generation/278/artifact/erd-fulfillment.zip]

Report ERD

ERD schema of Report service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-report-erd-generation/27/artifact/erd-report.zip]

OpenLMIS Reference Data UI

This repository is the UI for the OpenLMIS Reference Data Service. [https://github.com/OpenLMIS/openlmis-referencedata]

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

> git clone https://github.com/OpenLMIS/openlmis-referencedata-ui.git
> cd openlmis-referencedata-ui/

	Create a .env file, which can be used to overwrite ‘sensitive’ settings from config.json

> touch .env

	Develop w/ Docker by running docker-compose run --service-ports referencedata-ui.

	You should now be in an interactive shell inside the newly created development environment, build the project with:

$ npm install // installs the NodeJS tools

$ grunt --serve
// or
$ grunt clean bower build --serve

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --serve --openlmisServerURL=<openlmis server url>.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports requisition-ui

// Install dependencies
$ npm install
$ grunt clean
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --serve --openlmisServerURL=<openlmis server url>

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --serve --openlmisServerURL=<openlmis server url>

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run --entrypoint ./build.sh referencedata-ui
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

 openlmis-config/blob/test/.env# OpenLMIS Requisition Service
This repository holds the files for the OpenLMIS Requisition Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-requisition.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-requisition
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports requisition.
See Developing w/ Docker. You should now be in an interactive shell inside
the newly created development environment.

	Run gradle build to build. After the build steps finish, you should see ‘Build Successful’.

	Start the service with gradle bootRun. Once it is running, you should see
‘Started Application in NN seconds’. Your console will not return to a prompt as long as
the service is running. The service may write errors and other output to your console.

	You must authenticate to get a valid access_token before you can use the service.
Follow the Security [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security]
instructions to generate a POST request to the authorization server at http://localhost:8081/.
You can use a tool like Postman [https://www.getpostman.com/] to generate the POST.
The authorization server will return an access_token which you must save for use on requests to
this OpenLMIS service. The token will expire with age, so be ready to do this step often.

	Go to http://localhost:8080/?access_token=<yourAccessToken> to see the service name and version.
Note: If localhost does not work, the docker container with the service running might not be
bridged to your host workstation. In that case, you can determine your Docker IP address by
running docker-machine ip and then visit http://<yourDockerIPAddress>:8080/.

	Go to http://localhost:8080/index.html?access_token=<yourAccessToken> to see the Swagger UI showing the API endpoints.
(Click ‘default’ to expand the list.)

	Use URLs of the form http://localhost:8080/api/*?access_token=<yourAccessToken> to hit
the APIs directly.

Stopping the Service

To stop the service (when it is running with gradle bootRun) use Control-C.

To clean up unwanted Docker containers, see the Docker Cheat Sheet [https://openlmis.atlassian.net/wiki/display/OP/Docker+Cheat+Sheet#DockerCheatSheet-Cleaningup:].

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

Security

See the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Demo Data

A basic set of demo data is included with this service, defined under ./demo-data/. This data may
be optionally loaded by using the demo-data Spring Profile. Setting this profile may be done by
setting the spring.profiles.active environment variable.

When building locally from the development environment, you may run:

$ export spring_profiles_active=demo-data
$ gradle bootRun

To see how to set environment variables through Docker Compose, see the
Reference Distribution [https://github.org/openlmis/openlmis-ref-distro]

Performance Testing Data

A generated, sufficiently-large set of data is defined in
./src/main/resources/db/performance-data/. This data set is meant for performance testing, which
helps answer questions such as:

	what happens to this operation when there are 10,000 Orderables / users / facilities?

	how many concurrent requests can we serve?

	what’s the network characteristic for clients on mobile connections?

This data set builds upon the demo data set and therefore must be loaded after demo-data is loaded.
To do so activate the performance-data Spring Profle after demo-data, for example:

$ export spring_profiles_active=demo-data,performance-data
$ gradle bootRun

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

	CONSUMED_REASON_ID - the ID of the reason that will be used to make consumption entries in Stock Management physical inventory

	RECEIPTS_REASON_ID - the ID of the reason that will be used to make receipts entries in Stock Management physical inventory

Stock Management ERD

ERD schema of Stock Management service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-stockmanagement-erd-generation/346/artifact/erd-stockmanagement.zip]

Requisition ERD

ERD schema of Requisition service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-requisition-erd-generation/1278/artifact/erd-requisition.zip]

OpenLMIS Fulfillment UI Module

This repository is the UI for the OpenLMIS Fulfillment Service. [https://github.com/OpenLMIS/openlmis-fulfillment]

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

> git clone https://github.com/OpenLMIS/openlmis-fulfillment-ui.git
> cd openlmis-fulfillment-ui/

	Create a .env file, which can be used to overwrite ‘sensitive’ settings from config.json

> touch .env

	Develop w/ Docker by running docker-compose run --service-ports fulfillment-ui.

	You should now be in an interactive shell inside the newly created development environment, build the project with:

$ npm install // installs the NodeJS tools

$ grunt --serve
// or
$ grunt clean bower build --serve

	Go to http://localhost:9000/webapp/ to see the login page.

Note: To change the location of where the OpenLMIS-UI attemps to access OpenLMIS, use the command grunt build --serve --openlmisServerURL=<openlmis server url>.

Building & Testing

See the OpenLMIS/dev-ui project [https://github.com/OpenLMIS/dev-ui] for more information on what commands are available, below are the command you might use during a normal work day.

// Open docker in an interactive shell
> docker-compose run --service-ports requisition-ui

// Install dependencies
$ npm install
$ grunt clean
$ grunt bower

// Build and run the UI against a OpenLMIS server
$ grunt build --serve --openlmisServerURL=<openlmis server url>

// Run unit tests
$ grunt karma:unit

// Run a watch process that will build and test your code
// NOTE: You must change a file at least once before your code is rebuilt
$ grunt watch --serve --openlmisServerURL=<openlmis server url>

Built Artifacts

After the OpenLMIS-UI is built and being served, you can access the following documents:

	http://localhost:9000/webapp/ The compiled OpenLMIS application

	http://localhost:9000/docs/ JS Documentation created from the source code

	http://localhost:9000/styleguide/ KSS Documentation created from the CSS

Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the UI module.

> docker-compose pull
> docker-compose run --entrypoint ./build.sh fulfillment-ui
> docker-compose build image

Internationalization (i18n)

Transifex has been integrated into the development and build process. In order to sync with the project’s resources in Transifex, you must provide values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the sync_transifex.sh script. This will upload your source messages file to the Transifex project and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

OpenLMIS Report Service

This repository holds the files for the OpenLMIS Report Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-report.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-report
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports report.
See Developing w/ Docker. You should now be in an interactive shell inside
the newly created development environment.

	Run gradle build to build. After the build steps finish, you should see ‘Build Successful’.

	Start the service with gradle bootRun. Once it is running, you should see
‘Started Application in NN seconds’. Your console will not return to a prompt as long as
the service is running. The service may write errors and other output to your console.

	You must authenticate to get a valid access_token before you can use the service.
Follow the Security [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security]
instructions to generate a POST request to the authorization server at http://localhost:8081/.
You can use a tool like Postman [https://www.getpostman.com/] to generate the POST.
The authorization server will return an access_token which you must save for use on requests to
this OpenLMIS service. The token will expire with age, so be ready to do this step often.

	Go to http://localhost:8080/?access_token=<yourAccessToken> to see the service name and version.
Note: If localhost does not work, the docker container with the service running might not be
bridged to your host workstation. In that case, you can determine your Docker IP address by
running docker-machine ip and then visit http://<yourDockerIPAddress>:8080/.

	Go to http://localhost:8080/index.html?access_token=<yourAccessToken> to see the Swagger UI showing the API endpoints.
(Click ‘default’ to expand the list.)

	Use URLs of the form http://localhost:8080/api/*?access_token=<yourAccessToken> to hit
the APIs directly.

Stopping the Service

To stop the service (when it is running with gradle bootRun) use Control-C.

To clean up unwanted Docker containers, see the Docker Cheat Sheet [https://openlmis.atlassian.net/wiki/display/OP/Docker+Cheat+Sheet#DockerCheatSheet-Cleaningup:].

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

Security

See the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Demo Data

You can use a standard data set for demonstration purposes. To do so, first follow the Quick Start
until step 3 is done: https://github.com/OpenLMIS/openlmis-report/blob/master/README.md#quickstart.
Then, before gradle bootRun, use gradle demoDataSeed. This will generate a sql input file under
./demo-data directory.

To insert this data into the database, finish the Quick Start steps,
and then outside of container’s interactive shell, run:
docker exec -i openlmisreport_db_1 psql -Upostgres open_lmis < demo-data/input.sql

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

 nav.xhtml

 Table of Contents

 		Welcome to OpenLMIS' documentation!

 		Release Notes

 		3.2.0 Release Notes - 1 September 2017

 		Status: Stable

 		Release Notes

 		New Features

 		Changes to Existing Functionality

 		API Changes

 		All Changes by Component

 		Components with No Changes

 		Contributions

 		Further Resources

 		Architecture

 		Docker

 		UI

 		OpenLMIS-UI Application Structure

 		Build Process

 		UI Extention Guide

 		Components

 		Auth

 		Fulfillment Service

 		CCE Service

 		Report Service

 		Notification Service

 		Reference Data Service

 		Reference UI

 		Requisition Service

 		Stock Management Service

 		Contributing

 		Contributing to OpenLMIS

 		Reporting Bugs

 		Contributing Code

 		Git, Branching & Pull Requests

 		Automated Testing

 		Continuous Integration, Continuous Deployment (CI/CD) and Demo Systems

 		Language Translations & Localized Implementations

 		Licensing

 		Feature Roadmap

 		Contributing Documentation

 		References

 		Contribute documentation

 		Build process

 		Contributing

 		Conventions

 		The License Header

 		Service Conventions

 		OpenLMIS Service Style Guide

 		Testing Guide

 		Error Handling Conventions

 		Service Health

 		UI Conventions

 		OpenLMIS-UI Styleguide

 		OpenLMIS-UI Coding Conventions

 		Performance

 		Performance Testing

 		Performance Data

 		Performance Tips

 		Deployment

 		Recommended Deployment Topology

 		How to provision a single Docker host in AWS

 		Database

 		How to provision a docker swarm for deployment in AWS (With ELB)

 		1. Network setup

 		2. Create EC2 instances

 		3. Add ssh public key to the newly created EC2 instances

 		4. Create ELB

 		5. Enable health check

 		6. Provision all EC2 instances

 		7. Start swarm

 		8. Allow Jenkins to access swarm manager

 		How to provision a docker swarm for deployment in AWS (With Elastic IP)

 		1. Create EC2 instances

 		2. Add ssh public key to the newly created EC2 instances

 		3. Provision all EC2 instances

 		4. Start swarm

 		5. Allow Jenkins to access swarm manager

 		Deployment Environments

 		Overview

 		Local Usage

 		How to backup persisted data?

 		RDS configuration

 		Setting up PostGIS for RDS

 		Adding UUID extension on RDS

 		Versioning and Releasing

 		Micro-Services are Versioned Independently

 		Where We Publish Releases

 		Release Numbering

 		Goals

 		Pre-Releases

 		Modifiers

 		We Prefer Coordination over Branching

 		Code Reviews and Pull Requests

 		Future Strategies

 		Rolling a Release

 		Goals

 		Prerequisites

 		Releasing a Component (or Updating the Version SNAPSHOT)

 		Releasing the Reference Distribution (openlmis-ref-distro)

_static/minus.png

_static/up-pressed.png

_images/header.png
Fap.
=
OpenLMIS

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

