

 [image: OpenLMIS]

Welcome to OpenLMIS’ documentation!

OpenLMIS (Open Logistics Management Information System) is software for a
shared, open source solution for managing medical commodity distribution
in low- and middle-income countries. For more information, see OpenLMIS.org [http://openlmis.org].

Contents:

	Developer docs

	ERD

	Style Guide

	API documentation

Links:

	
	Project Management

	
	Issue Tracking & Project Management [https://openlmis.atlassian.net]

	Wiki [https://openlmis.atlassian.net/wiki/spaces/OP]

	
	Communication

	
	Slack [http://openlmis.slack.com]

	Developer Forum [https://groups.google.com/forum/#!forum/openlmis-dev]

	Product Comittee Forum [https://groups.google.com/forum/#!forum/openlmis_product_committee]

	Governance Comittee Forum [https://groups.google.com/forum/#!forum/openlmis-governance]

	
	Development

	
	GitHub [https://github.com/openlmis]

	DockerHub [https://hub.docker.com/u/openlmis] (Published Docker Images)

	OSS Sonatype [https://oss.sonatype.org/#nexus-search;quick~org.openlmis] (Maven Publishing)

	Code Review [https://review.openlmis.org]

	Code Quality Analysis [http://sonar.openlmis.org] (SonarQube)

	CI Server [http://build.openlmis.org] (Jenkins)

	CD Server [http://test.openlmis.org]

	UAT Server [http://uat.openlmis.org]

Developer docs

As of OpenLMIS v3, the architecture [https://openlmis.atlassian.net/wiki/x/IYAKAw]
has transitioned to (micro) services fulfilling RESTful (HTTP) API requests
from a modularized Reference UI. Extension mechanisms in addition to
microservices and UI modules further allow for components of the architecture
to be customized without the need for the community to fork the code base:

	UI modules give flexibility in creating new user experiences or changing existing ones

	Extension Points & Modules - allows Service functionality to be modified

	Extra Data - allows for extensions to store data with existing components

Combined these components allow the OpenLMIS community to customize and
contribute to a shared LMIS.

Conventions

	OpenLMIS Service Style Guide

	Testing Guide

	Error Handling Conventions

	The License Header

	Versioning and Releasing

Component Readme’s

	OpenLMIS Requisition Service

	OpenLMIS Fulfillment Service

	OpenLMIS Authentication Service

	OpenLMIS Reference Data Service

	OpenLMIS Service Template

	OpenLMIS Reference UI

Contribute

	Contributing to OpenLMIS

	Contribute documentation

OpenLMIS Service Style Guide

This is a WIP as a style guide for an Independent Service. Clones of this file should reference
this definition.

Java

OpenLMIS has adopted [https://groups.google.com/d/msg/openlmis-dev/CCwBglBFbpk/pY406WbkAAAJ] the
Google Java Styleguide [https://google.github.io/styleguide/javaguide.html]. These checks are
mostly encoded in Checkstyle and should be enforced for all contributions.

Some additional guidance:

	Try to keep the number of packages to a minimum. An Independent Service’s Java code should
generally all be in one package under org.openlmis (e.g. org.openlmis.requisition).

	Sub-packages below that should generally follow layered-architecture conventions; most (if not
all) classes should fit in these four: domain, repository, service, web. To give specific
guidance:

	Things that do not strictly deal with the domain should NOT go in the domain package.

	Serializers/Deserializers of domain classes should go under domain, since they have
knowledge of domain object details.

	DTO classes, belonging to serialization/deserialization for endpoints, should go under web.

	Exception classes should go with the classes that throw the exception.

	We do not want separate sub-packages called exception, dto, serializer for these
purposes.

	When wanting to convert a domain object to/from a DTO, define Exporter/Importer interfaces for
the domain object, and export/import methods in the domain that use the interface methods. Then
create a DTO class that implements the interface methods. (See Right [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/domain/Right.java]
and RightDto [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/dto/RightDto.java]
for details.)

	Additionally, when Exporter/Importer interfaces reference relationships to other domain
objects, their Exporter/Importer interfaces should also be used, not DTOs. (See example [https://github.com/OpenLMIS/openlmis-referencedata/blob/master/src/main/java/org/openlmis/referencedata/domain/Role.java#L219].)

	Even though the no-argument constructor is required by Hibernate for entity objects, do not use
it for object construction (you can set access modifier to private); use provided constructors or static factory methods. If one does not
exist, create one using common sense parameters.

RESTful Interface Design & Documentation

Designing and documenting

Note: many of these guidelines come from
Best Practices for Designing a Pragmatic RESTful API [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api].

	Result filtering, sorting and searching should be done by query parameters.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#advanced-queries]

	Return a resource representation after a create/update.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#useful-post-responses]

	Use camelCase (vs. snake_case) for names, since we are using Java and JSON.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#snake-vs-camel]

	Don’t use response envelopes as default (if not using Spring Data REST).
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#envelope]

	Use JSON encoded bodies for create/update.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#json-requests]

	Use a clear and consistent error payload.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#errors]

	Use the HTTP status codes effectively.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status]

	Resource names should be pluralized and consistent. e.g. prefer requisitions, never
requisition.

	Resource representations should use the following naming and patterns:

	Essential: representations which can be no shorter. Typically this is an id and a code.
Useful most commonly when the resource is a collection, e.g. /api/facilities.

	Normal: representations which typically are returned when asking about a specific
resource. e.g. /api/facilities/{id}. Normal representations define the normal transactional
boundary of that resource, and do not include representations of other resources.

	Optional: a representation that builds off of the resource’s essential
representation, allowing for the client to ask for additional fields to be returned by
specifying a fields query parameter. The support for these representations is completely, as
the name implies, optional for a resource to provide.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#limiting-fields]

	Expanded: a representation which is in part, not very RESTful. This representation
allows for other, related, resources to be included in the response by way of the expand
query parameter. Support for these representations is also optional, and in part somewhat
discouraged.
Details [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#autoloading]

	A PUT on a single resource (e.g. PUT /facilities/{id}) is not strictly an update; if the
resource does not exist, one should be created using the specified identity (assuming the
identity is a valid UUID).

	Exceptions, being thrown in exceptional circumstances (according to Effective Java by Joshua
Bloch), should return 500-level HTTP codes from REST calls.

	Not all domain objects in the services need to be exposed as REST resources. Care should be
taken to design the endpoints in a way that makes sense for clients. Examples:

	RoleAssignments are managed under the users resource. Clients just care that users have
roles; they do not care about the mapping.

	RequisitionGroupProgramSchedules are managed under the requisitionGroups resource.
Clients just care that requisition groups have schedules (based on program).

	RESTful endpoints that simply wish to return a JSON value (boolean, number, string) should wrap
that value in a JSON object, with the value assigned to the property “result”. (e.g. { "result": true })

	Note: this is to ensure compliance with all JSON parsers, especially ones that adhere to
RFC4627, which do not consider JSON values to be valid JSON. See the discussion
here [http://stackoverflow.com/questions/18419428/what-is-the-minimum-valid-json].

	When giving names to resources in the APIs, if it is a UUID, its name should have a suffix of “Id”
to show that. (e.g. /api/users/{userId}/fulfillmentFacilities has query parameter rightId to get
by right UUID.)

	If you are implementing HTTP caching [http://docs.openlmis.org/en/latest/conventions/performanceTips.html#e-tag-and-if-none-match]
for an API and the response is a DTO, make sure the DTO implements equals() and hashCode() using
all its exposed properties. This is because of potential confusion of a property change without a
change of ETag.

We use RAML (0.8) to document our RESTful APIs, which are then converted into HTML for static API
documentation or Swagger UI for live documentation. Some guidelines for defining APIs in RAML:

	JSON schemas for the RAML should be defined in a separate JSON file, and placed in a schemas
subfolder in relation to the RAML file. These JSON schema files would then be referenced in the
RAML file like this (using role as an example):

- role: !include schemas/role.json

- roleArray: |
 {
 "type": "array",
 "items": { "type": "object", "$ref": "schemas/role.json" }
 }

	(Note: this practice has been established because RAML 0.8 cannot define an array of a JSON
schema for a request/response body (details [http://forums.raml.org/t/set-body-to-be-array-of-defined-schema-objects/1566/3]).
If the project moves to the RAML 1.0 spec and our RAML testing tool [https://github.com/nidi3/raml-tester]
adds support for RAML 1.0, this practice might be revised.)

Pagination

Many of the GET endpoints that return collections should be paginated at the API level. We use
the following guidelines for RESTful JSON pagination:

	Pagination options are done by query paramaters. i.e. use /api/someResources?page=2 and not
/api/someResources/page/2.

	When an endpoint is paginated, and the pagination options are not given, then we return the
full collection. i.e. a single page with every possible instance of that resource. It’s
therefore up to the client to use collection endpoints responsibly and not over-load the backend.

	A paginated resource that has no items returns a single page, with it’s content attribute
as empty.

	Resource’s which only ever return a single identified item are not paginated.

	For Java Service’s the query parameters should be defined by a Pageable [http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/domain/Pageable.html]
and the response should be a Page [http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/domain/Page.html].

Example Request (note that page is zero-based):

GET /api/requisitions/search?page=0&size=5&access_token=<sometoken>

Example Response:

{
 "content": [
 {
 ...
 }
],
 "totalElements": 13,
 "totalPages": 3,
 "last": false,
 "numberOfElements": 5,
 "first": true,
 "sort": null,
 "size": 5,
 "number": 0
}

Postgres Database

For guidelines on how to write schema migrations using Flyway, see Writing Schema Migrations
(Using Flyway).

	Each Independent Service should store its tables in its own schema. The convention is to use
the Service’s name as the schema. e.g. The Requisition Service uses the requisition schema

	Tables, Columns, constraints etc should be all lower case.

	Table names should be pluralized. This is to avoid most used words. e.g. orders instead of
order

	Table names with multiple words should be snake_case.

	Column names with multiple words should be merged together. e.g. getFirstName() would map to
firstname

	Columns of type uuid should end in ‘id’, including foreign keys.

RBAC (Roles & Rights) Naming Conventions

	Names for rights in the system should follow a RESOURCE_ACTION pattern and should be all uppercase,
e.g. REQUISITION_CREATE, or FACILITIES_MANAGE. This is so all of the rights of a certain resource can
be ordered together (REQUISITION_CREATE, REQUISITION_AUTHORIZE, etc.).

i18n (Localization)

Transifex and the Build Process

OpenLMIS v3 uses Transifex for translating message strings so that the product can be used in
multiple languages. The build process of each OpenLMIS service contains a step to sync message
property files with a corresponding Transifex project. Care should be taken when managing keys in
these files and pushing them to Transifex.

	If message keys are added to the property file, they will be added to the Transifex project,
where they are now available to be translated.

	If message keys or strings are modified in the property file, any translations for them will be
lost and have to be re-translated.

	If message keys are removed in the property file, they will be removed from the Transifex
project. If they are re-added later, any translations for them will be lost and have to be
re-translated.

Naming Conventions

These naming conventions will be applicable for the messages property files.

	Keys for the messages property files should follow a hierarchy. However, since there is no
official hierarchy support for property files, keys should follow a naming convention of most to
least significant.

	Key hierarchy should be delimited with a period (.).

	The first portion of the key should be the name of the Independent Service.

	The second portion of the key should indicate the type of message; error for error messages,
message for anything not an error.

	The third and following portions will further describe the key.

	Portions of keys that don’t have hierarchy, e.g. a.b.code.invalidLength and a.b.code.invalidFormat,
should use camelCase.

	Keys should not include hyphens or other punctuation.

Examples:

	requisition.error.product.code.invalid - an alternative could be
requisition.error.productCode.invalid if code is not a sub-section of product.

	requisition.message.requisition.created - requisition successfully created.

	referenceData.error.facility.notFound - facility not found.

Note: UI-related keys (labels, buttons, etc.) are not addressed here, as they would be owned by the
UI, and not the Independent Service.

Testing

See the Testing Guide.

Docker

Everything deployed in the reference distribution needs to be a Docker container. Official OpenLMIS containers are made from their respective containers that are published for all to see on our Docker Hub [https://hub.docker.com/u/openlmis/].

	Dockerfile (Image) best practices [https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/]

	Keep Images portable & one-command focused. You should be comfortable publishing these images publicly and openly to the DockerHub.

	Keep Containers ephemeral. You shouldn’t have to worry about throwing one away and starting a new one.

	Utilize docker compose to launch containers as services and map resources

	An OpenLMIS Service should be published in one image found on Docker Hub

	Services and Infrastructure that the OpenLMIS tech committee owns are published under the “openlmis” namespace of docker and on the Docker Hub.

	Avoid Docker Host Mounting [https://docs.docker.com/engine/tutorials/dockervolumes/#/mount-a-host-directory-as-a-data-volume], as this doesn’t work well when deploying to remote hosts (e.g. in CI/CD)

Gradle Build

Pertaining to the build process performed by Gradle.

	Anything generated by the Gradle build process should go under the build folder (nothing
generated should be in the src folder).

Logging

Each Service includes the SLF4J library for generating logging messages. Each Service should be forwarding these log
statements to a remote logging container. The Service’s logging configuration should indicate the name of the service
the logging statement comes from and should be in UTC.

What generally should be logged:

	DEBUG - should be used to provide more information to developers attempting to debug what happened. e.g. bad user input,
constraint violations, etc

	INFO - to log processing progress. If the progress is for a developer to understand what went wrong, use DEBUG. This
tends to be more useful for performance monitoring and remote production debugging after a client’s installation has failed.

Less used:

	FATAL - is reserved for programming errors or system conditions that resulted in the application (Service) terminating. Developers
should not be using this directly, and instead use ERROR.

	ERROR - is reserved for programming conditions or system conditions that would have resulted in the Service terminating, however some
safety oriented code caught the condition and made it safe. This should be reserved for a global Service level handler that will convert all Exceptions into a HTTP 5xx level exception.

Audit Logging

OpenLMIS aims to create a detailed audit log for most all actions that occur within the system. In practice this
means that as a community we want all RESTful Resources (e.g. /api/facilities/{id}) to also have a full audit log
for every change (e.g. /api/facilities/{id}/auditLog) and for that audit log to be accessible to the user in a
consistent manner.

A few special notes:

	When a resource has line items (e.g. Requisition, Order, PoD, Stock Card, etc), the line item would not have its own
REST Resource, in that case if changes are made to a line item, those changes need to be surfaced in the lint item’s
parent. For example, if a change is made to a Requisition Line Item, then the audit log for that change is available
in the audit log for the Requisition, as one can’t retrieve through the API the single line item.

	There are a few cases where audit logs may not be required by default. These cases typically involve the resource
being very transient in nature: short drafts, created Searches, etc. When this is in question, explore the requirements
for how long the resource needs to exist and if it forms part of the system of record in the supply chain.

Most Services use JaVers to log changes to Resources. The audits logs for individual Resources should be exposed via
endpoints which look as follows:

/api/someResources/{id}/auditLog

Just as with other paginated endpoints, these requests may be filtered via page and size
query paramaters: /api/someResources?page=0&size=10

The returned log may additionally be filtered by author and changedPropertyName query paramaters.
The later specifies that only changes made by a given user should be returned, whereas the later dictates
that only changes related to the named property should be shown.

Each /api/someResources/{id}/auditLog endpoint should return a 404 error if and only if the specified {id} does not exist.
In cases where the resource id exists but lacks an associated audit log, an empty array representing the empty audit should be returned.

Within production services, the response bodies returned by these endpoints should correspond
to the JSON schema defined by auditLogEntryArray within /resources/api-definition.yaml. It is
recognized and accepted that this differs from the schema intended for use by other collections
throughout the system. Specifically, whereas other collections which support paginated requests are
expected to return pagination-related metadata (eg: “totalElements,” “totalPages”) within their
response bodies, the responses proffered by /auditLog endpoints do not retur pagination related data.

Testing Guide

This guide is intended to layout the general automated test strategy for OpenLMIS.

Test Strategy

OpenLMIS, like many software projects, relies on testing to guide development and prevent regressions. To effect this we’ve adopted a standard set of tools to write and execute our tests, and categorize them to understand what types of tests we have, who writes them, when they’re written, run, and where they live.

Types of Tests

The following test categories have been identified for use in OpenLMIS. As illustrated in this great slide deck [http://martinfowler.com/articles/microservice-testing/], we expect the effort/number of tests in each category to reflect the test pyramid [http://martinfowler.com/articles/microservice-testing/#conclusion-test-pyramid]:

	Unit

	Integration

	Component

	Contract

	End-to-End

Unit Tests [bookmark: unit]

	Who: written by code-author during implementation

	What: the smallest unit (e.g. one piece of a model’s behavior, a function, etc)

	When: at build time, should be /fast/ and targeted - I can run just a portion of the test suite

	Where: Reside inside a service, next to unit under test. Generally able to access package-private scope

	Why: to test fundamental pieces/functionality, helps guide and document design and refactors, protects against regression

Unit Test Examples

	Every single test should be independent and isolated. Unit test shouldn’t depend on another unit test.

DO NOT:

List<Item> list = new ArrayList<>();

@Test
public void shouldContainOneElementWhenFirstElementisAdded() {
 Item item = new Item();
 list.add(item);
 assertEquals(1, list.size());
}

@Test
public void shouldContainTwoElementsWhenNextElementIsAdded() {
 Item item = new Item();
 list.add(item);
 assertEquals(2, list.size());
}

	One behavior should be tested in just one unit test.

DO NOT:

@Test
public void shouldNotBeAdultAndShouldNotBeAbleToRunForPresidentWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);

 boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident(age)
 assertFalse(isAbleToRunForPresident);
}

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
}

@Test
public void shouldNotBeAbleToRunForPresidentWhenAgeBelow18() {
 int age = 17;
 boolean isAbleToRunForPresident = electionsService.isAbleToRunForPresident(age)
 assertFalse(isAbleToRunForPresident);
}

	Every unit test should have at least one assertion.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
}

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
}

	Don’t make unnecessary assertions. Don’t assert mocked behavior, avoid assertions that check the exact same thing as another unit test.

DO NOT:

 @Test
 public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 assertEquals(17, age);

 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
 }

	Unit test has to be independent from external resources (i.e. don’t connect with databases or servers)

DO NOT:

 @Test
 public void shouldNotBeAdultWhenAgeBelow18() {
 String uri = String.format("http://127.0.0.1:8080/age/", HOST, PORT);
 HttpPost httpPost = new HttpPost(uri);
 HttpResponse response = getHttpClient().execute(httpPost);
 assertEquals(HttpStatus.ORDINAL_200_OK, response.getStatusLine().getStatusCode());
 }

	Unit test shouldn’t test Spring Contexts. Integration tests are better for this purpose.

DO NOT:

 @RunWith(SpringJUnit4ClassRunner.class)
 @ContextConfiguration(locations = {"/services-test-config.xml"})
 public class MyServiceTest implements ApplicationContextAware
 {

 @Autowired
 MyService service;
 ...
 @Override
 public void setApplicationContext(ApplicationContext context) throws BeansException
 {
 // something with the context here
 }
 }

	Test method name should clearly indicate what is being tested and what is the expected output and condition. The “should - when” pattern should be used in the name.

DO:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 ...
}

DO NOT:

@Test
public void firstTest() {
 ...
}

@Test
public void testIsNotAdult() {
 ...
}

	Unit test should be repeatable - each run should yield the same result.

DO NOT:

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 int age = randomGenerator.nextInt(100);
 boolean isAdult = ageService.isAdult(age);
 assertFalse(isAdult);
}

	You should remember about intializing and cleaning each global state between test runs.

DO:

@Mock
private AgeService ageService;
private age;

@Before
public void init() {
 age = 18;
 when(ageService.isAdult(age)).thenReturn(true);
}

@Test
public void shouldNotBeAdultWhenAgeBelow18() {
 boolean isAdult = ageService.isAdult(age);
 assertTrue(isAdult);
}

	Test should run fast. When we have hundreds of tests we just don’t want to wait several minutes till all tests pass.

DO NOT:

 @Test
 public void shouldNotBeAdultWhenAgeBelow18() {
 int age = 17;
 sleep(1000);
 boolean isAdult = ageService.isAdult(age);
 sleep(1000);
 assertFalse(isAdult);
 }

Integration Tests [bookmark: integration]

	Who: Code author during implementation

	What: Test basic operation of a service to persistent storage or a service to another service. When another service is required, a test-double should be used, not the actual service.

	When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from build to not slow development. Will be run in CI on every change.

	Where: Reside inside a service, separated from other types of tests/code.

	Why: Ensures that the basic pathways to a service’s external run-time dependancies work. e.g. that a db schema supports the ORM, or a non-responsive service call is gracefully handled.

For testing controllers, they are divided up into unit and integration tests. The controller unit tests will be testing the logic in the controller, while the integration tests will be mostly testing serialization/deserialization (and therefore do not need to test all code paths). In both cases, the underlying services and repositories are mocked.

Component Tests [bookmark: component]

	Who: Code author during implementation

	What: Test more complex operations in a service. When another service is required, a test-double should be used, not the actual service.

	When: As explicitly asked for, these tests are typically slower and therefore need to be kept separate from build to not slow development. Will be run in CI on every change.

	Where: Reside inside a service, separated from other types of tests/code.

	Why: Tests interactions between components in a service are working as expected.

These are not integration tests, which strictly test the integration between the service and an external dependency. These test the interactions between components in a service are working correctly. While integration tests just test the basic pathways are working, component tests verify that, based on input, the output matches what is expected.

These are not contract tests, which are more oriented towards business requirements, but are more technical in nature. The contract tests will make certain assumptions about components, and these tests make sure those assumptions are tested.

Contract Tests [bookmark: contract]

	Who: Code author during implementation, with input from BA/QA.

	What: Enforces contracts between and to services.

	When: Ran in CI.

	Where: Reside inside separate repository: openlmis-contract-tests [http://github.com/openlmis/openlmis-contract-tests].

	Why: Tests multiple services working together, testing contracts that a Service both provides as well as the requirements a dependant has.

The main difference between contract and integration tests:
In contract tests, all the services under test are real, meaning that they will be processing requests and sending responses.
Test doubles, mocking, stubbing should not be a part of contract tests.

Refer to this doc [https://github.com/OpenLMIS/openlmis-contract-tests/blob/master/README.md] for examples of how to write contract tests.

End-to-End Tests [bookmark: e2e]

	Who: QA / developer with input from BA.

	What: Typical/core business scenarios.

	When: Ran in CI.

	Where: Resides in seperate repository.

	Why: Ensures all the pieces are working together to carry-out a business scenario. Helps ensure end-users can achieve their goals.

Testing services dependent on external APIs

OpenLMIS is using WireMock for mocking web services. An example integration test can be found here:
https://github.com/OpenLMIS/openlmis-example/blob/master/src/test/java/org/openlmis/example/WeatherServiceTest.java

The stub mappings which are served by WireMock’s HTTP server are placed under src/test/resources/mappings and _src/test/resources/__files_
For instructions on how to create them please refer to http://wiremock.org/record-playback.html

Testing Tools

	spring-boot-starter-test

	Spring Boot Test

	JUnit

	Mockito

	Hamcrest

	WireMock [http://wiremock.org]

	REST Assured [http://rest-assured.io]

	raml-tester [https://github.com/nidi3/raml-tester]

Error Handling Conventions

OpenLMIS would like to follow error handling best practices, this document covers the
conventions we’d like to see followed in the various OpenLMIS components.

Java and Spring

The Java community has a long-standing debate about the proper use of Exceptions. This section
attempts to be pragmatic about the use of exceptions - especially understanding the Spring
community’s exception handling techniques.

Exceptions in Java are broken down into two categories: those that are recovearable (checked) and
those where client code can in no-way recover from the Exception (runtime). OpenLMIS strongly
discourages the use of checked exceptions, and the following section discusses what is encouraged
and why checked exceptions should be avoided.

A pattern for normal error-handling

Normal errors for the purpose of this document are things like input validation or other business
logic constraints. There are a number of sources that make the claim that these types of errors
are not exceptional (i.e. bad user input is to be expected normally) and therefore Java
Exception’s shouldn’t be used. While that’s generally very good advice, we will be using
runtime exceptions (not checked exceptions) as long as they follow the best practices laid out here.

The reasoning behind this approach is two-fold:

	Runtime exceptions are used when client code can’t recover from their use. Typically
this has been used for the class of programming errors that indicate that the software encountered a
completely unexpected programming error for which it should immediately terminate. We
expand this definition to include user-input validation and business logic constraints
for which further user-action is required. In that case the code can’t recover - it has to
receive something else before it could ever proceed, and while we don’t want the program to
terminate, we do want the current execution to cease so that it may pop back to a Controller level
component that will convert these exceptions into the relevant (non-500) HTTP response.

	Using Runtime exceptions implies that we never write code that catches them.
We will use Spring’s @ControllerAdvice which will catch them for us, but our code should have
less “clutter” as it’ll be largely devoid of routine error-validation handling.

Effectively using this pattern requires the following rules:

	The Exception type (class) that’s thrown will map one-to-one with an HTTP Status code that we
want to return, and this mapping will be true across the Service. e.g. a
throw ValidationException will always result in the HTTP Status code 400 being returned with the
body containing a “nice message” (and not a stacktrace).

	The exception thrown is a sub-type of java.lang.RuntimeException.

	Client code to a method that returns RuntimeException’s should never try to handle the
exception. i.e. it should not try {...} catch ...

	The only place that these RuntimeExceptions are handled is by a class annotated
@ControllerAdvice that lives along-side all of the Controllers.

	If the client code needs to report multiple errors (e.g. multiple issues in validating user
input), then that collection of errors needs to be grouped before the exception is thrown.

	A Handler should never be taking one of our exception types, and returning a HTTP 500 level
status. This class is reserved specifically to indicate that a programming error has occurred.Reserving this directly allows for easier searching of the logs for program-crashing type of errors.

	Handler’s should log these exceptions at the DEBUG level. A lower-level such as TRACE could be
used, however others such as ERROR, INFO, FATAL, WARN, etc should not.

Example

The exception

public class ValidationException extends RuntimeException { ... }

A controller which uses the exception

@Controller
public class WorkflowController {

 @RequestMapping(...)
 public WorkflowDraft doSomeWorkflow() {
 ...

 if (someError)
 throw new ValidationException(...);

 ...

 return new WorkflowDraft(...);
 }
}

The exception handler that’s called by Spring should the WorkflowController throw
ValidationException.

@ControllerAdvice
public class WorkflowExceptionHandler {
 @ExceptionHandler(ValidationException.class)
 @ResponseStatus(HttpStatus.BAD_REQUEST)
 private Message.LocalizedMessage handleValidationException(ValidationException ve) {
 ...
 logger.debug(ve);
 return ve.getTheLocalizedMessage();
 }
}

Exceptions - what we don’t want

Lets look at a simple example that is indicative of the sort of code we’ve been writing using
exceptions. This example consists of a web-endpoint that returns a setting for a given key, which
hands off the work to an application service layer that uses the key provided to find the given
setting.

A controller (HTTP end-point) that is asked to return some setting for a given “key”

@RequestMapping(value = "/settings/{key}", method = RequestMethod.GET)
public ResponseEntity<?> getByKey(@PathVariable(value = "key") String key) {
 try {
 ConfigurationSetting setting = configurationSettingService.getByKey(key);
 return new ResponseEntity<>(setting, HttpStatus.OK);
 } catch (ConfigurationSettingException ex) {
 return new ResponseEntity(HttpStatus.NOT_FOUND);
 }
}

The service logic that finds the key and returns it (i.e. configurationSettingService above):

public ConfigurationSetting getByKey(String key) throws ConfigurationSettingException {
 ConfigurationSetting setting = configurationSettingRepository.findOne(key);
 if (setting == null) {
 throw new ConfigurationSettingException("Configuration setting '" + key + "' not found");
 }
 return setting;
}

In this example we see that the expected end-point behavior is to either return the setting asked
for and an HTTP 200 (success), or to respond with HTTP 404 - the setting was not found.

This usage of an Exception here is not what we want for a few reasons:

	The Controller directly handles the exception - it has a try-catch block. It should only
handle the successful path which is when the exception isn’t thrown. We should have a Handler
which is @ControllerAdvice.

	The exception ConfigurationSettingException doesn’t add anything - either semantically or
functionally. We know that this type of error isn’t that there’s some type of Configuration
Setting problem, but rather that something wasn’t found. This could more generically and more
accurately be named a NotFoundException. It conveys the semantics of the error and one single
Handler method for the entire Spring application could handle all NotFoundExceptions by
returning a HTTP 404.

	It’s worth noting that this type of null return is handled well in Java 8’s Optional. We would
still throw an exception at the Controller so that the Handler could handle the error, however
an author of middle-ware code should be aware that they could use Optional instead of throwing
an exception on a null immediately. This would be most useful if many errors could occur - i.e.
in processing a stream.

	This code is flagged by static analysis
tools [http://sonar.openlmis.org/issues/search#issues=AVc18ErL0QRqkcp89olY] with the error that
this exception should be “Either log or re-throw this exception”. A lazy programmer might
“correct” this by logging the exception, however this would result in the log being permeated
with noise from bad user input - which should be avoided.

How the API responds with validation error messages

What are Validation Error Messages?

In OpenLMIS APIs, validation errors can happen on PUT, POST, DELETE or even GET. When validation or
permissions are not accepted by the API, invalid requests should respond with a helpful validation
error message. This response has an HTTP response body with a simple JSON object that wraps the
message. Different clients may use this message as they wish, and may display it to end-users.

The Goal: We want the APIs to respond with validation error messages in a standard way. This will
allow the APIs and the UI components to all be coded and tested against one standard.

When does this pattern apply?

When does this “validation error message” pattern apply? We want to apply this pattern for all of
the error situations where we return a HTTP response body with an error message. For more details
about which HTTP status codes this aligns with, see the ‘HTTP Status Codes’ section below.

What do we return on Success?

In general, success responses should not include a validation message of the type specified here.
This will eliminate the practice which was done in OpenLMIS v2, EG:

PUT /requisitions/75/save.json
Response: HTTP 200 OK
Body: {"success":"R&R saved successfully!"}

On success of a PUT or POST, the API should usually return the updated resource with a HTTP 200
OK or HTTP 201 Created response code. On DELETE, if there is nothing appropriate to return, then
an empty response body is appropriate with a HTTP 204 No Content response code.

HTTP Status Codes

Success is generally a 2xx HTTP status code and we don’t return validation error messages on
success. Generally, validation errors are 4xx HTTP status codes (client errors). Also, we don’t
return these validation error messages for 5xx HTTP status codes (server or network errors).
We do not address 5xx errors because OpenLMIS software does not always have control over what the
stack returns for 5xx responses (those could come from NGINX or even a load balancer).

Examples below show appropriate use of HTTP 403 and 422 status codes with validation error messages.
The OpenLMIS Service Style Guide [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md]
includes further guidance on HTTP Status Codes that comes from
Best Practices for Designing a Pragmatic RESTful API [http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api#http-status].

Example: Permissions/RBAC

The API does a lot of permission checks in case a user tries to make a request without the needed
permissions. For example, a user may try to initiate a requisition at a facility where they don’t
have permissions. That should generate a HTTP 403 Forbidden response with a JSON body like this:

{
 "message" : "Action prohibited because user does not have permission at the facility",
 "messageKey" : "requisition.error.prohibited.noFacilityPermission"
}

When creating these error validation messages, we encourage developers to avoid repeating code.
It may be appropriate to write a helper class that generates these JSON validation error responses
with a simple constructor.

We also don’t want developers to spend lots of time authoring wordy messages. It’s best to keep the
messages short, clear and simple.

Translation/i18n

Message keys are used for translations. Keys should follow our
Style Guide i18n Naming Conventions [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md#i18n-naming-conventions].

The “messageKey” is the key into a property translation file such as a
.properties file [http://docs.transifex.com/formats/java-properties/] maintained using Transifex
or a similar tool.

The “messageKey” will be used with translation files in order to conduct translation, which we
allow and support on the server-side and/or the client-side. Any OpenLMIS instance may configure
translation to happen in its services or its clients.

A service will use the “messageKey” to translate responses into a different language server-side in
order to respond in the language of choice for that OpenLMIS implementation instance. And/or a
client/consumer may use the “messageKey” to translate responses into a language of choice.

The source code where a validation error is handled should have the “messageKey” only. The source
code should not have hard-coded message strings in English or any language.

Messages with Placeholders for Translation

Placeholders allow messages to be dynamic.
For example, “Action prohibited because user {0} does not have permission {1} at facility {2}”.

The Transifex tool appears to support different types of placeholders, such as {0} or %s and %d.
In OpenLMIS v2, the MessageService (called the Notification Service in v3) uses placeholders to
make email messages translate-able. For an example, see the
StatusChangeEventService [https://github.com/OpenLMIS/open-lmis/blob/master/modules/core/src/main/java/org/openlmis/core/service/StatusChangeEventService.java#L62].

Multiple errors in response

When validation is not accepted, we want to use the top level error message with section
below with multiple field errors. Every field error in response should contain message key and
message for specific field rejected by validator. Field errors can be nested. Instead of arrays,
map should be returned with rejected field name as a key. When field is an element of array, resource
identifier should be used as the key, such as UUID or code.

{
 "message": "Validation error occurred",
 "messageKey": "requisition.error.validation.fail",
 "fieldErrors": {
 "comment": {
 "message": "Comment is longer than 255 characters and can not be saved",
 "messageKey": "requisition.comment.error.invalidLength"
 },
 "requisitionLineItems": {
 "0c4b5efe-259c-44c9-8969-f157f778ee0f": {
 "stockOnHand": {
 "message": "Stock on hand can not be negative",
 "messageKey": "requisition.error.validation.stockOnHand.cannotBeNegative"
 }
 }
 }
 }
}

Future: Arrays of Messages

In the future, we may extend these guidelines to support an array of multiple messages.

Future: Identifying Fields Where Validation Was Not Accepted

In the future, it may also be helpful to extend this to allow the error messages to be associated
with a specific piece of data. For example, if a Requisition Validation finds that line item
quantities do not add up correctly, it could provide an error message tied to a specific product
(line item) and field. Often this kind of validation may be done by the client (such as in the
AngularJS UI app), and the client can immediately let the end-user know about a specific field
with a validation error.

Future: Including Stack-Traces in Development Mode

In the future, it may be useful to be able to launch the entire application in a debug mode.In this mode errors returned via the API might include a stacktrace or other context normally
reserved for the server log. This would be a non-default mode that developers could use to
more easily develop the application.

Proposed RAML

schemas:
 - localizedErrorResponse: |
 {
 "type": "object",
 "$schema": "http://json-schema.org/draft-04/schema",
 "title": "LocalizedErrorResponse",
 "description": "Localized Error response",
 "properties": {
 "message": { "type": "string", "title": "error message" },
 "messageKey": { "type": "string", "title": "key for translations" },
 "fieldErrors": {
 "type": "object",
 "title": "FieldErrors",
 "description": "Field errors"
 }
 },
 "required": ["messageKey", "message"]
 }

/requisitions:
 /{id}:
 put:
 description: Save a requisition with its line items
 responses:
 403:
 422:
 body:
 application/json:
 schema: errorResponse

The License Header

Each java or javascript file in the codebase should be annotated with the
proper copyright header. This header should be also applied to singnificant html files.

We use checkstyle to check for it being present in Java files. We also check for
it during our Grunt build in javascript files.

The current copyright header format can be found here. [https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/LICENSE-HEADER]

Replace the year and holder with appropriate holder, for example:

Copyright © 2017 VillageReach

Versioning and Releasing

Micro-Services are Versioned Independently

OpenLMIS version 3 introduced a micro-services architecture where each component is versioned and
released independently. In addition, all the components are packaged together into a Reference
Distribution. When we refer to OpenLMIS 3.X.Y, we are talking about a release of the Reference
Distribution, called the ref-distro in GitHub [https://github.com/OpenLMIS/openlmis-ref-distro].
The components inside ref-distro 3.X.Y have their own separate version numbers which are listed on
the Release Notes.

The components are each semantically versioned [http://semver.org/], while the ref-distro has
“milestone” releases that are conducted roughly quarterly (every 3 months we release 3.2, 3.3, etc).
Each ref-distro release includes specific versions of the other components, both service components
and UI components.

Where We Publish Releases

All OpenLMIS source code is available on GitHub, and the components have separate repositories.
Releases are tagged on GitHub for all components as well as the ref-distro. Releases of some
components, such as the service components and UI components, are also published to Docker Hub as
versioned docker images. In addition, we publish releases of the service utility
library [https://github.com/OpenLMIS/openlmis-service-util] to Maven.

Release Numbering

Version 3 components follow the Semantic Versioning [http://semver.org/] standard:

	Patch releases with bug fixes, small changes and security patches will come out on an
as-needed schedule (1.0.1, 1.0.2, etc). Compatibility with past releases under the Major.Minor
is expected.

	Minor releases with new functionality will be backwards-compatible (1.1, 1.2, 1.3, etc).
Compatibility with past releases under the same Major number is expected.

	Major releases would be for non-backwards-compatible API changes. When a new major version
of a component is included in a Reference Distribution release, the Release Notes will document
any migration or upgrade issues.

The Version 3 Reference Distribution follows a milestone release schedule with quarterly releases.
Release Notes for each ref-distro release will include the version numbers of each component
included in the distribution. If specific components have moved by a Minor or Major version number,
the Release Notes will describe the changes (such as new features or any non-backwards-compatible
API changes or migration issues).

Version 2 also followed the semantic versioning standard.

Goals

Predictable versioning is critical to enable multiple country implementations to share a common
code base and derive shared value. This is a major goal of the 3.0 Re-Architecture. For example,
Country A’s implementation might fix a bug or add a new report, they would contribute that code
to the open source project, and Country B could use it; and Country B could contribute something
that Country A could use. For this to succeed, multiple countries using the OpenLMIS version 3
series must be upgrading to the latest Patch and Minor releases as they become available. Each
country shares their bug fixes or new features with the open source community for inclusion in the
next release.

Pre-Releases

Starting with version 3, OpenLMIS supports pre-releases following the Semantic Versioning standard.

Currently we suggest the use of beta releases. For example, 3.0 Beta is: 3.0.0-beta.

Note: the use of the hyphen consistent with Semantic Versioning. However a pre-release SHOULD NOT
use multiple hyphens. See the note in Modifiers on why.

Modifiers

Starting with version 3, OpenLMIS utilizes build modifiers to distinguish releases from intermediate
or latest builds. Currently supported:

Modifier: SNAPSHOT
Example: 3.0.0-beta-SNAPSHOT
Use: The SNAPSHOT modifier distinguishes this build as the latest/cutting edge available. It’s
intended to be used when the latest changes are being tested by the development team and should not
be used in production environments.

Note: that there is a departure with Semantic Versioning in that the (+) signs are not used as a
delimiter, rather a hyphen (-) is used. This is due to Docker Hub not supporting the use of plus
signs in the tag name.

For discussion on this topic, see this
thread [https://groups.google.com/forum/#!topic/openlmis-dev/cDV42HOdvCI]. The 3.0.0 semantic
versioning and schedule were also discussed at the Product Committee meeting on February 14,
2017 [https://openlmis.atlassian.net/wiki/display/OP/February+14+2017].

We Prefer Coordination over Branching

Because each component is independently, semantically versioned, the developers working on that
component need to coordinate so they are working towards the same version (their next release).

Each component’s repository has a version file (gradle.properties or version.properties) that
states which version is currently being developed. By default, we expect components will be working
on the master branch towards a Patch release. The developers can coordinate any time they are ready
to work on features (for a Minor release).

If developers propose to break with past API compatibility and make a Major release of the
component, that should be discussed on the Dev
Forum [https://groups.google.com/forum/#!forum/openlmis-dev]. They should be ready to articulate a
clear need, to evaluate other options to avoid breaking backwards-compatibility, and to document a
migration path for all existing users of the software. Even if the Dev Forum and component lead
decide to release a Major version, we still require automated schema migrations (using Flyway) so
existing users will have their data preserved when they upgrade.

Branching in git is discouraged. OpenLMIS does not use git-flow or a branching-based workflow. In
our typical workflow, developers are all contributing on the master branch to the next release of
their component. If developers need to work on more than one release at the same time, then they
could use a branch. For example, if the component is working towards its next Patch, such as
1.0.1-SNAPSHOT, but a developer is ready to work on a big new feature for a future Minor release,
that developer may choose to work on a branch. Overall, branching is possible, but we prefer to
coordinate to work together towards the same version at the same time, and we don’t have a
branch-driven workflow as part of our collaboration or release process.

Code Reviews and Pull Requests

We expect all code committed to OpenLMIS receives either a review from a second person or goes
through a pull request workflow on GitHub. Generally, the developers who are dedicated to working
on OpenLMIS itself have commit access in GitHub. They coordinate in Slack, they plan work using
JIRA tickets and sprints, and during their ticket workflow a code review is conducted. Code should
include automated tests, and the ticket workflow also includes a human Quality Assurance (QA) step.

Any other developers are invited to contribute to OpenLMIS using Pull Requests in GitHub at any
time. This includes developers who are implementing, extending and customizing OpenLMIS for
different local needs.

For more about the coding standards and how to contribute, see contributionGuide.md.

Future Strategies

As the OpenLMIS version 3 installation base grows, we expect that additional strategies will be
needed so that new functionality added to the platform will not be a risk or a barrier for existing
users. Feature Toggles is one strategy the technical community is considering.

Rolling a Release

Below is the process used for creating and publishing a release of each component as well as the
Reference Distribution (OpenLMIS 3.X.Y).

Goals

What’s the purpose of publishing a release? It gives us a specific version of the software for the
community to test drive and review. Beta releases will be deployed with demo data to the UAT site
uat.openlmis.org [http://uat.openlmis.org]. That will be a public, visible URL that will stay the
same while stakeholders test drive it. It will also have demo data and will not be automatically
wiped and updated each time a new Git commit is made.

Prerequisites

Before you release, make sure the following are in place:

	Demo data and seed data: make sure you have demo data that is sufficient to demonstrate the
features of this release. Your demo data might be built into the repositories and used in the
build process OR be prepared to run a one-time database load script/command.

	Features are completed for this release and are checked in.

	All automated tests pass.

	Documentation is ready. For components, this is the CHANGELOG.md file, and for the ref-distro
this is a Release Notes page in the wiki.

Releasing a Component (or Updating the Version SNAPSHOT)

Each component is always working towards some future release, version X.Y.Z-SNAPSHOT. A component
may change what version it is working towards, and when you update the serviceVersion of that
component, the other items below need to change.

These steps apply when you change a component’s serviceVersion (changing which -SNAPSHOT the
codebase is working towards):

	Within the component, set the serviceVersion property in the gradle.properties file to
the new -SNAPSHOT you’ve chosen.

	See Step 3 below for details.

	Update openlmis-ref-distro to set docker-compose.yml to use the new -SNAPSHOT this
component is working towards.

	See Step 5 below for details.

	Use a commit message that explains your change. EG, “Upgrade to 3.1.0-SNAPSHOT of
openlmis-requisition component.”

	Update openlmis-deployment to set each docker-compose.yml file in the deployment/ folder
for the relevant environments, probably uat_env/, test_env/, but not demo_env/

	See Step 7 below for details.

	Similar to above, please include a helpful commit message. (You do not need to tag this repo
because it is only used by Jenkins, not external users.)

	Update openlmis-contract-tests to set each docker-compose…yml file that includes your
component to use the new -SNAPSHOT version.

	Similar to the previous steps, see the lines under “services:” and change its version to the new
snapshot.

	You do not need to tag this repo. It will be used by Jenkins for subsequent contract test runs.

	(If your component, such as the openlmis-service-util library, publishes to Maven, then other
steps will be needed here.)

Releasing the Reference Distribution (openlmis-ref-distro)

When you are ready to create and publish a release (Note that version modifiers should not be used
in these steps - e.g. SNAPSHOT):

	Select a tag name such as ‘3.0.0-beta’ based on the numbering guidelines above.

	The service utility library should be released prior to the Services. Publishing to the central
repository may take some time, so publish at least a few hours before building and publishing the
released Services:

	Update the serviceVersion of GitHub’s openlmis-service-util

	Check Jenkins built it successfully

	At Nexus Repository Manager [https://oss.sonatype.org/], login and navigate to Staging
Repositories. In the list scroll until you find orgopenlmis-NNNN. This is the staged
release.

	Close the repository, if this succeeds, release it. More
information [http://central.sonatype.org/pages/releasing-the-deployment.html].

	Wait 1-2 hours for the released artifact to be available on Maven Central. Search here to
check: https://search.maven.org/

	In each OpenLMIS Service’s build.gradle, update the dependency version of the library to point
to the released version of the library (e.g. drop ‘SNAPSHOT’)

	In each service, set the serviceVersion property in the gradle.properties file to the
version you’ve chosen. Push this to GitHub, then log on to GitHub and create a release tagged
with the same tag. Note that GitHub release tags should start with the letter “v”, so
‘3.0.0-beta’ would be tagged ‘v3.0.0-beta’. It’s safest to choose a particular commit to use as
the Target (instead of just using the master branch, default). Also, when you create the version
in GitHub check the “This is a pre-release” checkbox if indeed that is true. Do this for each
service/UI module in the project, including the API services and the AngularJS UI repo (note: in
that repo, the file is called version.properties, not gradle.properties). DON’T update the
Reference Distribution yet.

	Do we need a release branch? No, we do not need a release branch, only a tag. If there are any
later fixes we need to apply to the 3.0 Beta, we would issue a new beta release (eg, 3.0 Beta
R1) to publish additional, specific fixes.

	Do we need a code freeze? We do not need a “code freeze” process. We will add the tag in Git,
and everyone can keep committing further work on master as usual. Updates to master will be
automatically built and deployed at the Test site [http://test.openlmis.org], but not the UAT
site [http://uat.openlmis.org].

	Confirm that your release tags appear in GitHub and in Docker Hub:
First, look under the Releases tab of each repository, eg
https://github.com/OpenLMIS/openlmis-requisition/releases.
Next, look under Tags in each Docker Hub repository. eg
https://hub.docker.com/r/openlmis/requisition/tags/ . You’ll need to wait for the Jenkins
jobs to complete and be successful so give this a few minutes.
Note: After tagging each service, you may also want to change the serviceVersion again so that
future commits are tagged on Docker Hub with a different tag. For example, after releasing
‘3.1.0’ you may want to change the serviceVersion to ‘3.1.1-SNAPSHOT’. You need to coordinate
with developers on your component to make sure everyone is working on ‘master’ branch towards
that same next release.
Finally, on Jenkins, identify which build was the one that built and published to Docker/Maven
the release. Press the Keep the build forever button.

	In openlmis-config, tag the most recent commit with the tag version (including the ‘v’).

	Update docker-compose.yml in openlmis-ref-distro with the release chosen

	For each of the services deployed as the new version on DockerHub, update the version in the
docker-compose.yml file to the version you’re releasing. See the lines under “services:” →
serviceName → “image: openlmis/requisition-refui:3.0.0-beta-SNAPSHOT” and change that last part
to the new version tag for each service.

	Commit this change and tag the openlmis-ref-distro repo with the release being made.
Note: There is consideration underway about using a git branch to coordinate the ref-distro
release.

	In order to publish the openlmis-ref-distro documentation to ReadTheDocs:

	Edit collect-docs.py to change links to pull in specific version tags of README files. In that
script, change a line like
urllib.urlretrieve("https://raw.githubusercontent.com/OpenLMIS/openlmis-referencedata/master/README.md", "developer-docs/referencedata.md")
to
urllib.urlretrieve("https://raw.githubusercontent.com/OpenLMIS/openlmis-referencedata/v3.0.0/README.md, "developer-docs/referencedata.md")

	To make your new version visible in the “version” dropdown on ReadTheDocs, it has to be set as
“active” in the admin settings on readthedocs (admin -> versions -> choose active versions). Once
set active the link is displayed on the documentation page (it is also possible to set default
version).

	Update docker-compose.yml in openlmis-deployment for the UAT deployment script with the release
chosen which is at https://github.com/OpenLMIS/openlmis-deployment/blob/master/deployment/uat_env/docker-compose.yml

	For each of the services deployed as a the new version on DockerHub, update the version in the
docker-compose.yml file to the version you’re releasing.

	Commit this change. (You do not need to tag this repo because it is only used by Jenkins, not
external users.)

	Kick off each -deploy-to-uat job on Jenkins

	Wait about 1 minute between starting each job

	Confirm UAT has the deployed service. e.g. for the auth service:
http://uat.openlmis.org/auth check that the version is the one chosen.

	Navigate to uat.openlmis.org and ensure it works

Once all these steps are completed and verified, the release process is complete. At this point you
can conduct communication tasks such as sharing the URL and Release Announcement to stakeholders.
Congratulations!

OpenLMIS Requisition Service

This repository holds the files for the OpenLMIS Requisition Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-requisition.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-requisition
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports requisition.
See Developing w/ Docker. You should now be in an interactive shell inside
the newly created development environment.

	Run gradle build to build. After the build steps finish, you should see ‘Build Successful’.

	Start the service with gradle bootRun. Once it is running, you should see
‘Started Application in NN seconds’. Your console will not return to a prompt as long as
the service is running. The service may write errors and other output to your console.

	You must authenticate to get a valid access_token before you can use the service.
Follow the Security [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security]
instructions to generate a POST request to the authorization server at http://localhost:8081/.
You can use a tool like Postman [https://www.getpostman.com/] to generate the POST.
The authorization server will return an access_token which you must save for use on requests to
this OpenLMIS service. The token will expire with age, so be ready to do this step often.

	Go to http://localhost:8080/?access_token=<yourAccessToken> to see the service name and version.
Note: If localhost does not work, the docker container with the service running might not be
bridged to your host workstation. In that case, you can determine your Docker IP address by
running docker-machine ip and then visit http://<yourDockerIPAddress>:8080/.

	Go to http://localhost:8080/index.html?access_token=<yourAccessToken> to see the Swagger UI showing the API endpoints.
(Click ‘default’ to expand the list.)

	Use URLs of the form http://localhost:8080/api/*?access_token=<yourAccessToken> to hit
the APIs directly.

Stopping the Service

To stop the service (when it is running with gradle bootRun) use Control-C.

To clean up unwanted Docker containers, see the Docker Cheat Sheet [https://openlmis.atlassian.net/wiki/display/OP/Docker+Cheat+Sheet#DockerCheatSheet-Cleaningup:].

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

Security

See the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Demo Data

You can use a standard data set for demonstration purposes. To do so, first follow the Quick Start
until step 3 is done: https://github.com/OpenLMIS/openlmis-requisition/blob/master/README.md#quickstart.
Then, before gradle bootRun, use gradle demoDataSeed. This will generate a sql input file under
./demo-data directory.

To insert this data into the database, finish the Quick Start steps,
and then outside of container’s interactive shell, run:
docker exec -i openlmisrequisition_db_1 psql -Upostgres open_lmis < demo-data/input.sql

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

OpenLMIS Fulfillment Service

This repository holds the files for the OpenLMIS Fulfillment Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-fulfillment.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-fulfillment
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports fulfillment.
See Developing w/ Docker. You should now be in an interactive shell inside
the newly created development environment.

	Run gradle build to build. After the build steps finish, you should see ‘Build Successful’.

	Start the service with gradle bootRun. Once it is running, you should see
‘Started Application in NN seconds’. Your console will not return to a prompt as long as
the service is running. The service may write errors and other output to your console.

	You must authenticate to get a valid access_token before you can use the service.
Follow the Security [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security]
instructions to generate a POST request to the authorization server at http://localhost:8081/.
You can use a tool like Postman [https://www.getpostman.com/] to generate the POST.
The authorization server will return an access_token which you must save for use on requests to
this OpenLMIS service. The token will expire with age, so be ready to do this step often.

	Go to http://localhost:8080/?access_token=<yourAccessToken> to see the service name and version.
Note: If localhost does not work, the docker container with the service running might not be
bridged to your host workstation. In that case, you can determine your Docker IP address by
running docker-machine ip and then visit http://<yourDockerIPAddress>:8080/.

	Go to http://localhost:8080/index.html?access_token=<yourAccessToken> to see the Swagger UI showing the API endpoints.
(Click ‘default’ to expand the list.)

	Use URLs of the form http://localhost:8080/api/*?access_token=<yourAccessToken> to hit
the APIs directly.

Stopping the Service

To stop the service (when it is running with gradle bootRun) use Control-C.

To clean up unwanted Docker containers, see the Docker Cheat Sheet [https://openlmis.atlassian.net/wiki/display/OP/Docker+Cheat+Sheet#DockerCheatSheet-Cleaningup:].

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

Security

See the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Demo Data

You can use a standard data set for demonstration purposes. To do so, first follow the Quick Start
until step 3 is done: https://github.com/OpenLMIS/openlmis-fulfillment/blob/master/README.md#quickstart.
Then, before gradle bootRun, use gradle demoDataSeed. This will generate a sql input file under
./demo-data directory.

To insert this data into the database, finish the Quick Start steps,
and then outside of container’s interactive shell, run:
docker exec -i openlmisfulfillment_db_1 psql -Upostgres open_lmis < demo-data/input.sql

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

If you are using the hauptmedia/proftpd [https://hub.docker.com/r/hauptmedia/proftpd/] Docker image for testing fulfillment (like we do in our reference distribution), you can use the following variables to set the username and password for that server:

	FTP_USERNAME - the username of the FTP user.

	FTP_PASSWORD - the password of the FTP user.

Note: the fulfillment service does not use the variables above for setting up any connections - the configuration is kept in the database and managed through the appropriate endpoints.

OpenLMIS Authentication Service

This repository holds the files for OpenLMIS Authentication Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-auth.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://github.com/OpenLMIS/openlmis-config/blob/master/.env]. e.g.

cd openlmis-auth
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports auth.
See Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development
environment, start the Service with: gradle bootRun

	Go to http://<yourDockerIPAddress>:8080/ to see the service name
and version. Note that you can determine yourDockerIPAddress by running docker-machine ip.

	Go to http://<yourDockerIPAddress>:8080/api?access_token=<access_token_id> to see the APIs.
For additional info about security see the Security section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#security.

Service Design

See the Design document.

API Definition and Testing

See the API Definition and Testing section in the Example Service README at
https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#api.

Building & Testing

See the Building & Testing section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#building.

[bookmark: devdocker]Developing with Docker

See the Developing with Docker section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devdocker.

Development Environment

See the Development Environment section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#devenv.

Build Deployment Image

See the Build Deployment Image section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#buildimage.

Publish to Docker Repository

TODO

Docker’s file details

See the Docker’s file details section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#dockerfiles.

Running complete application with nginx proxy

See the Running complete application with nginx proxy section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#nginx.

Logging

See the Logging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#logging.

Internationalization (i18n)

See the Internationalization section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#internationalization.

Debugging

See the Debugging section in the Service Template README at
https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#debugging.

Production by Spring Profile

By default when this service is started, it will clean it’s schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

The auth service also uses the following variables:

	TOKEN_DURATION - The period of inactivity in seconds after which authentication tokens will expire. For example set this to 900 in order to have tokens expire after 15 minutes of inactivity. The default value is 1800 (30 minutes).

OpenLMIS Reference Data Service

This service contains all of the reference data for OpenLMIS 3.x.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

[bookmark: quickstart]Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-referencedata.git

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use [this one]
(https://github.com/OpenLMIS/openlmis-config/blob/master/.env). e.g.

cd openlmis-referencedata
curl -LO https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env

	Develop w/ Docker by running docker-compose run --service-ports referencedata. See
Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development environment,
start the Service with: gradle bootRun

	Go to http://localhost:8080/ to see the service name and version.

	Go to http://localhost:8080/api/ to see the APIs.

[bookmark: building]Building & Testing

Gradle is our usual build tool. This template includes common tasks
that most Services will find useful:

	clean to remove build artifacts

	build to build all source. build, after building sources, also runs unit tests. Build will
be successful only if all tests pass.

	generateMigration -PmigrationName=<yourMigrationName> to create a “blank” database migration
file. The file will be generated under src/main/resources/db/migration. Put your migration SQL
into it.

	test to run unit tests

	integrationTest to run integration tests

	sonarqube to execute the SonarQube analysis.

The test results are shown in the console.

While Gradle is our usual build tool, OpenLMIS v3+ is a collection of Independent Services where
each Gradle build produces 1 Service. To help work with these Services, we use Docker to develop,
build and publish these.

See Developing with Docker.

[bookmark: devdocker]Developing with Docker

OpenLMIS utilizes Docker to help with development, building, publishing and deployment of
OpenLMIS Services. This helps keep development to deployment environments clean, consistent and
reproducible and therefore using Docker is recommended for all OpenLMIS projects.

To enable development in Docker, OpenLMIS publishes a couple Docker Images:

	openlmis/dev [https://hub.docker.com/r/openlmis/dev/] - for Service development. Includes the
JDK & Gradle plus common build tools.

	openlmis/postgres [https://hub.docker.com/r/openlmis/postgres/] - for quickly standing up a
shared PostgreSQL DB.

In addition to these Images, each Service includes Docker Compose instructions to:

	standup a development environment (run Gradle)

	build a lean image of itself suitable for deployment

	publish its deployment image to a Docker Repository

[bookmark: devenv]Development Environment

Launches into shell with Gradle & JDK available suitable for building Service. PostgreSQL
connected suitable for testing. If you run the Service, it should be available on port 8080.

Before starting the development environment, make sure you have a .env file as outlined in the
Quick Start instructions.

> docker-compose run --service-ports <your-service-name>
$ gradle clean build
$ gradle bootRun

[bookmark: buildimage]Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build servers for automated
building, testing and docker image generation of the service.

Before building the deployment image, make sure you have a .env file as outlined in the Quick
Start instructions.

> docker-compose -f docker-compose.builder.yml run builder
> docker-compose -f docker-compose.builder.yml build image

Publish to Docker Repository

TODO

[bookmark: dockerfiles]Docker’s file details

A brief overview of the purpose behind each docker related file

	Dockerfile: build a deployment ready image of this service suitable for publishing.

	docker-compose.yml: base docker-compose file. Defines the basic composition from the
perspective of working on this singular vertical service. These aren’t expected to be used in the
composition of the Reference Distribution.

	docker-compose.override.yml: extends the docker-compose.yml base definition to provide for
the normal usage of docker-compose inside of a single Service: building a development
environment. Wires this Service together with a DB for testing, a gradle cache volume and maps
tomcat’s port directly to the host.

	docker-compose.builder.yml: an alternative docker-compose file suitable for CI type of
environments to test & build this Service and generate a publishable/deployment ready Image of
the service.

	docker-compose.prod.yml: Docker-compose file suitable for production. Contains nginx-proxy
image and virtual host configuration of each service.

[bookmark: nginx]Running complete application with nginx proxy

	Enter desired VIRTUAL_HOST for each service in the docker-compose.prod.yml file.

	Start up containers

> docker-compose -f docker-compose.yml -f docker-compose.prod.yml up

	The application should be available at port 80.

[bookmark: logging]Logging

Logging is implemented using SLF4J in the code, Logback in Spring Boot, and routed to an external
Syslog server. There is a default configuration XML (logback.xml) in the resources folder. To
configure the log level for the development environment, simply modify the logback.xml to suit
your needs.

Configuring log level for a production environment is a bit more complex, as the code has already
been packaged into a Spring Boot jar file. However, the default log configuration XML can be
overridden by setting the Spring Boot logging.config property to an external logback.xml when the
jar is executed. The container needs to be run with a JAVA_OPTS environment variable set to a
logback.xml location, and with a volume with the logback.xml mounted to that location. Some docker
compose instructions have been provided to demonstrate this.

	Build the deployment image. (See Build Deployment Image)

	Get a logback.xml file and modify it to suit your log level configuration.

	Modify docker-compose.builder.yml to point to your logback.xml location.
a. Under volumes, where it shows two logback.xml locations separated by a colon, change the
location before the colon.

	Run the command below.

> docker-compose -f docker-compose.builder.yml run --service-ports template-service

[bookmark: internationalization]Internationalization (i18n)

Internationalization is implemented by the definition of two beans found in the Application
class, localeResolver and messageSource. (Alternatively, they could be defined in an application
context XML file.) The localeResolver determines the locale, using a cookie named lang in the
request, with en (for English) as the default. The messageSource determines where to find the
message files.

Note there is a custom message source interface, ExposedMessageSource, with a corresponding class
ExposedMessageSourceImpl. These provide a method to get all the messages in a locale-specific
message file.

See the MessageController class for examples on how to get messages.

Additionally, Transifex [https://www.transifex.com/] has been integrated into the development and
build process. In order to sync with the project’s resources in Transifex, you must provide
values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the
sync_transifex.sh script. This will upload your source messages file to the Transifex project
and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

[bookmark: debugging]Debugging

To debug the Spring Boot application, use the --debug-jvm option.

$ gradle bootRun --debug-jvm

This will enable debugging for the application, listening on port 5005, which the container has
exposed. Note that the process starts suspended, so the application will not start up until the
debugger has connected.

Demo Data

You can use a standard data set for demonstration purposes. To do so, first follow the Quick Start
until step 3 is done: https://github.com/OpenLMIS/openlmis-referencedata/blob/master/README.md#quickstart.
Then, before gradle bootRun, use gradle demoDataSeed. This will generate a sql input file under
./demo-data directory.

To insert this data into the database, finish the Quick Start steps,
and then outside of container’s interactive shell, run:
docker exec -i openlmisreferencedata_db_1 psql -Upostgres open_lmis < demo-data/input.sql

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Environment variables

Environment variables common to all services are listed here: https://github.com/OpenLMIS/openlmis-template-service/blob/master/README.md#environment-variables

OpenLMIS Service Template

This template is meant to be a starting point for developing a new
OpenLMIS 3.x Independent Service.

Prerequisites

	Docker 1.11+

	Docker Compose 1.6+

All other dependencies, such as Java, are delivered automatically via the Docker image. It is unnecessary to install them locally to run the service, though often helpful to do so for the sake of development. See the Tech section of openlmis/dev [https://hub.docker.com/r/openlmis/dev/] for a list of these optional dependencies.

Quick Start

	Fork/clone this repository from GitHub.

git clone https://github.com/OpenLMIS/openlmis-template-service.git <openlmis-your-service-name>

	Respectively change all instances of openlmis-template-service and
template-service within the project to openlmis-your-service-name and
your-service-name.

	Change all instances of the default version number (“0.0.1”) in the project to your
version number.

	Change the gradle build file to add any dependencies
(e.g. JPA, PostgreSQL).

	Add Java code to the template.

	Add an environment file called .env to the root folder of the project, with the required
project settings and credentials. For a starter environment file, you can use this
one [https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/settings-sample.env]. e.g.

cd <openlmis-your-service-name>
curl -o .env -L https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/settings-sample.env

	Develop w/ Docker by running docker-compose run --service-ports <your-service-name>.
See Developing w/ Docker.

	You should now be in an interactive shell inside the newly created development
environment, start the Service with: gradle bootRun

	Go to http://<yourDockerIPAddress>:8080/ to see the service name
and version. Note that you can determine yourDockerIPAddress by running docker-machine ip.

	Go to http://<yourDockerIPAddress>:8080/api/ to see the APIs.

[bookmark: building]Building & Testing

Gradle is our usual build tool. This template includes common tasks
that most Services will find useful:

	clean to remove build artifacts

	build to build all source. build, after building sources, also runs unit tests. Build will be successful only if all tests pass.

	generateMigration -PmigrationName=<yourMigrationName> to create a
“blank” database migration file. The file
will be generated under src/main/resources/db/migration. Put your
migration SQL into it.

	test to run unit tests

	integrationTest to run integration tests

	sonarqube to execute the SonarQube analysis.

The test results are shown in the console.

While Gradle is our usual build tool, OpenLMIS v3+ is a collection of
Independent Services where each Gradle build produces 1 Service.
To help work with these Services, we use Docker to develop, build and
publish these.

See Developing with Docker.

[bookmark: devdocker]Developing with Docker

OpenLMIS utilizes Docker to help with development, building, publishing
and deployment of OpenLMIS Services. This helps keep development to
deployment environments clean, consistent and reproducible and
therefore using Docker is recommended for all OpenLMIS projects.

To enable development in Docker, OpenLMIS publishes a couple Docker
Images:

	openlmis/dev [https://hub.docker.com/r/openlmis/dev/] - for Service
development. Includes the JDK & Gradle plus common build tools.

	openlmis/postgres [https://hub.docker.com/r/openlmis/postgres/] - for
quickly standing up a shared PostgreSQL DB

In addition to these Images, each Service includes Docker Compose
instructions to:

	standup a development environment (run Gradle)

	build a lean image of itself suitable for deployment

	publish its deployment image to a Docker Repository

[bookmark: devenv]Development Environment

Launches into shell with Gradle & JDK available suitable for building
Service. PostgreSQL connected suitable for testing. If you run the
Service, it should be available on port 8080.

Before starting the development environment, make sure you have a .env file as outlined in the
Quick Start instructions.

> docker-compose run --service-ports <your-service-name>
$ gradle clean build
$ gradle bootRun

[bookmark: buildimage]Build Deployment Image

The specialized docker-compose.builder.yml is geared toward CI and build
servers for automated building, testing and docker image generation of
the service.

Before building the deployment image, make sure you have a .env file as outlined in the Quick
Start instructions.

> docker-compose -f docker-compose.builder.yml run builder
> docker-compose -f docker-compose.builder.yml build image

Publish to Docker Repository

TODO

[bookmark: dockerfiles]Docker’s file details

A brief overview of the purpose behind each docker related file

	Dockerfile: build a deployment ready image of this service
suitable for publishing.

	docker-compose.yml: base docker-compose file. Defines the
basic composition from the perspective of working on this singular
vertical service. These aren’t expected to be used in the
composition of the Reference Distribution.

	docker-compose.override.yml: extends the docker-compose.yml
base definition to provide for the normal usage of docker-compose
inside of a single Service: building a development environment.
Wires this Service together with a DB for testing, a gradle cache
volume and maps tomcat’s port directly to the host. More on how this
file works: https://docs.docker.com/compose/extends/

	docker-compose.builder.yml: an alternative docker-compose file
suitable for CI type of environments to test & build this Service
and generate a publishable/deployment ready Image of the service.

	docker-compose.prod.yml: Docker-compose file suitable for production.
Contains nginx-proxy image and virtual host configuration of each service.

[bookmark: nginx]Running complete application with nginx proxy

	Enter desired VIRTUAL_HOST for each service in the docker-compose.prod.yml file.

	Start up containers

> docker-compose -f docker-compose.yml -f docker-compose.prod.yml up

	The application should be available at port 80.

[bookmark: logging]Logging

Logging is implemented using SLF4J in the code, Logback in Spring Boot, and routed to an
external Syslog server. There is a default configuration XML (logback.xml) in the resources
folder. To configure the log level for the development environment, simply modify the logback.xml
to suit your needs.

Configuring log level for a production environment is a bit more complex, as the code has already
been packaged into a Spring Boot jar file. However, the default log configuration XML can be
overridden by setting the Spring Boot logging.config property to an external logback.xml when the
jar is executed. The container needs to be run with a JAVA_OPTS environment variable set to a
logback.xml location, and with a volume with the logback.xml mounted to that location. Some docker
compose instructions have been provided to demonstrate this.

	Build the deployment image. (See Build Deployment Image)

	Get a logback.xml file and modify it to suit your log level configuration.

	Modify docker-compose.builder.yml to point to your logback.xml location.
a. Under volumes, where it shows two logback.xml locations separated by a colon, change the
location before the colon.

	Run the command below.

> docker-compose -f docker-compose.builder.yml run --service-ports template-service

[bookmark: internationalization]Internationalization (i18n)

Internationalization is implemented by the definition of two beans found in the Application
class, localeResolver and messageSource. (Alternatively, they could be defined in an application
context XML file.) The localeResolver determines the locale, using a cookie named lang in the
request, with en (for English) as the default. The messageSource determines where to find the
message files.

Note there is a custom message source interface, ExposedMessageSource, with a corresponding class
ExposedMessageSourceImpl. These provide a method to get all the messages in a locale-specific
message file.

See the MessageController class for examples on how to get messages.

Additionally, Transifex [https://www.transifex.com/] has been integrated into the development and
build process. In order to sync with the project’s resources in Transifex, you must provide
values for the following keys: TRANSIFEX_USER, TRANSIFEX_PASSWORD.

For the development environment in Docker, you can sync with Transifex by running the
sync_transifex.sh script. This will upload your source messages file to the Transifex project
and download translated messages files.

The build process has syncing with Transifex seamlessly built-in.

[bookmark: debugging]Debugging

To debug the Spring Boot application, use the --debug-jvm option.

$ gradle bootRun --debug-jvm

This will enable debugging for the application, listening on port 5005, which the container has
exposed. Note that the process starts suspended, so the application will not start up until the
debugger has connected.

Production by Spring Profile

By default when this service is started, it will clean its schema in the database before migrating
it. This is meant for use during the normal development cycle. For production data, this obviously
is not desired as it would remove all of the production data. To change the default clean & migrate
behavior to just be a migrate behavior (which is still desired for production use), we use a Spring
Profile named production. To use this profile, it must be marked as Active. The easiest way to
do so is to add to the .env file:

spring_profiles_active=production

This will set the similarly named environment variable and limit the profile in use. The
expected use-case for this is when this service is deployed through the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro].

Demo Data

A basic set of demo data is included with this service, defined under ./demo-data/. This data may
be optionally loaded by using the demo-data Spring Profile. Setting this profile may be done by
setting the spring.profiles.active environment variable.

When building locally from the development environment, you may run:

$ export spring_profiles_active=demo-data
$ gradle bootRun

To see how to set environment variables through Docker Compose, see the
Reference Distribution [https://github.com/openlmis/openlmis-ref-distro]

Environment variables

The following environment variables are common to our services. They can be set either directly in compose files for images or provided as an environment file. See docker-compose.yml [https://raw.githubusercontent.com/OpenLMIS/openlmis-ref-distro/master/docker-compose.yml] in the reference distribution for example usage. Also take a look at the sample .env file [https://raw.githubusercontent.com/OpenLMIS/openlmis-config/master/.env] we provide.

	BASE_URL - The base url of the OpenLMIS distribution. Will be used in generated links pointing to this distribution, as well as for communication between services. Each service should communicate with others using BASE_URL as the base in order to avoid direct communication, which might not work in more complex deployments. Services should also use this variable if they wish to generate a link to the application. This should be an url, for example: https://example.openlmis.org

	VIRTUAL_HOST - This is used by the nginx server as the virtual host under which the services are made avialble. This should be a host, for example: example.openlmis.org

	CONSUL_HOST - Identifies the IP address or DNS name of the Consul server. Set this to the host or IP under which the distribution is available and Consul listens for connections. Services should register with Consul under this address. This should be a host or an IP, for example 8.8.8.8.

	CONSUL_PORT - The port used by the Consul server - services should use this port to register with Consul. This should be a port number, for example 8500. 8500 is used by default.

	REQUIRE_SSL - Whether HTTPS is required. If set to true, nginx will redirect all incoming HTTP connections to HTTPS. By default SSL will not be required - either leave it blank or set to false if you wish to allow HTTP connections.

	LOCALE - Default localized system language. It will be applied to all running services, if this variable is missing default “en” value will be used.

	CORS_ALLOWED_ORIGINS - Comma-separated list of origins that are allowed, for example: https://test.openlmis.org,http://some.external.domain. * allows all origins. Leave empty to disable CORS.

	CORS_ALLOWED_METHODS - Comma-separated list of HTTP methods that are allowed for the above origins.

These variables are used by services for their connection to the database (none of these have defaults):

	DATABASE_URL - The JDBC url under which the database is accessible. Our services use jdbc:postgresql://db:5432/open_lmis for connecting to the PostgreSQL database running in a container.

	POSTGRES_USER - The username of the database user that the services should use. This variable is also used by our PostgreSQL container to create a user.

	POSTGRES_PASSWORD - The password of the database user that the services should use. This variable is also used by our PostgreSQL container to create a user.

These variables are used by our builds in order to integrate with the Transifex [https://www.transifex.com/] translation management system:

	TRANSIFEX_USER - The username to use with Transifex for updating translations.

	TRANSIFEX_PASSWORD - The password to use with Transifex for updating translations.

OpenLMIS Reference UI

The OpenLMIS Reference UI is the user interface for the OpenLMIS Reference Distribution. This user interface is designed to be a single page web application that is optimized for offline and low-bandwidth environments.

Multiple UI modules are compiled together with the OpenLMIS dev-ui to create the OpenLMIS Reference-UI. UI modules included in the OpenLMIS Reference-UI are:

	OpenLMIS Auth UI [https://github.com/OpenLMIS/openlmis-auth-ui]

	OpenLMIS Fulfillment UI [https://github.com/OpenLMIS/openlmis-fulfillment-ui]

	OpenLMIS Reference Data UI [https://github.com/OpenLMIS/openlmis-referencedata-ui]

	OpenLMIS Report UI [https://github.com/OpenLMIS/openlmis-report-ui]

	OpenLMIS Requisition UI [https://github.com/OpenLMIS/openlmis-requisition-ui]

	OpenLMIS UI Components [https://github.com/OpenLMIS/openlmis-ui-components]

	OpenLMIS UI Layout [https://github.com/OpenLMIS/openlmis-ui-layout]

Contributing to OpenLMIS

By contributing to OpenLMIS, you can help bring life-saving medicines to low- and middle-income countries.
The OpenLMIS community welcomes open source contributions. Before you get started, take a moment to review this
Contribution Guide, get to know the community [https://openlmis.org/about/community/] and join in on the
developer forum [https://groups.google.com/forum/#!forum/openlmis-dev].

The sections below describe all kinds of contributions, from bug reports to contributing code and translations.

Reporting Bugs

The OpenLMIS community uses JIRA for tracking bugs [https://openlmis.atlassian.net/projects/OLMIS/issues/].
This system helps track current and historical bugs, what work has been done, and so on. Reporting a bug with this
tool is the best way to get the bug fixed quickly and correctly.

Before you report a bug

	Search to see if the same bug or a similar one has already been reported. If one already exists, it saves
you time in reporting it again and the community from investigating it twice. You can add comments or explain
what you are experiencing or advocate for making this bug a high priority to fix quickly.

	If the bug exists but has been closed, check to see which version of OpenLMIS it was fixed on (the Fix Version in
JIRA) and which version you are using. If it is fixed in a newer version, you may want to upgrade. If you cannot
upgrade, you may need to ask on the technical forums.

	If the bug does not appear to be fixed, you can add a comment to ask to re-open the bug report or file a new one.

Reporting a new bug

Fixing bugs is a time-intensive process. To speed things along and assist in fixing the bug, it greatly helps to send
in a complete and detailed bug report. These steps can help that along:

	First, make sure you search for the bug! It takes a lot of work to report and investigate bug reports, so please do
this first (as described in the section Before You Report a Bug above).

	In the Description, write a clear and concise explanation of what you entered and what you saw, as well as what you
thought you should see from OpenLMIS.

	Include the detailed steps, such as the Steps in the example below, that someone unfamiliar with the bug can use to
recreate it. Make sure this bug occurs more than once, perhaps on a different personal computer or web browsers.

	The web browser (e.g. Firefox), version (e.g. v48), OpenLMIS version, as well as any custom modifications made.

	Your priority in fixing this bug

	If applicable, any error message text, stack trace, or logging output

	If possible and relevant, a sample or view of the database - though don’t post sensitive information in public

Example Bug Report

Requisition is not being saved
OpenLMIS v3.0, Postgres 9.4, Firefox v48, Windows 10

When attempting to save my in-progress Requisition for the Essential Medicines program for the reporting period of Jan 2017,
I get an error at the bottom of the screen that says "Whoops something went wrong".

Steps:

1. log in

2. go to Requistions->Create/Authorize

3. Select My Facility (Facility F3020A - Steinbach Hospital)

4. Select Essential Medicines Program

5. Select Regular type

6. Click Create for the Jan 2017 period

7. Fill in some basic requested items, or not, it makes no difference in the error

8. Click the Save button in the bottom of the screen

9. See the error in red at the bottom. The error message is "Whoops something went wrong".

I expected this to save my Requisition, regardless of completion, so that I may resume it later.

Please see attached screenshots and database snapshot.

Contributing Code

The OpenLMIS community welcomes code contributions and we encourage you to fix a bug or implement a new feature.

Coordinating with the Global Community

In reviewing contributions, the community promotes features that meet the broad needs of many countries for
inclusion in the global codebase. We want to ensure that changes to the shared, global code will not
negatively impact existing users and existing implementations. We encourage country-specific customizations to
be built using the extension mechanism. Extensions can be shared as open source projects so that other countries
might adopt them.

To that end, when considering coding a new feature or modification, please:

	Review your feature idea with the Product Committee [https://openlmis.atlassian.net/wiki/display/OP/Product+Committee].
They may help inform you about how other country needs overlap or differ. They may also consider including a new
feature in the global codebase using the New Feature Verification Process [https://openlmis.atlassian.net/wiki/display/OP/New+Feature+Verification+Process]
or reviewing the Global vs. Project-Specific Features wiki [https://openlmis.atlassian.net/wiki/display/OP/Global+vs.+Project-Specific+Features].

	Before modifying or extending core functionality, email the developer forum [https://groups.google.com/forum/#!forum/openlmis-dev]
or contact the Technical Committee [https://openlmis.atlassian.net/wiki/display/OP/Technical+Committee].
They can help share relevant resources or create any needed extension points (further details below).

Extensibility and Customization

A prime focus of version 3 is enabling extensions and customizations to happen without forking the codebase.

There are multiple ways OpenLMIS can be extended, and lots of documentation and starter code is available:

	The Reference UI supports extension by adding CSS, overriding HTML layouts, adding new screens, or replacing
existing screens in the UI application. See the UI Extension Architecture and Guide [https://github.com/OpenLMIS/openlmis-requisition-refUI/blob/master/docs/extention_guide.md].

	The Reference Distribution is a collection of collaborative Services, Services may be added in
or swapped out to create custom distributions.

	The Services can be extended using extension points in the Java code. The core team is eager to add more
extension points as they are requested by implementors. For documentation about this extension mechanism, see
these 3 READMEs: openlmis-example-extensions README [https://github.com/OpenLMIS/openlmis-example-extensions/blob/master/README.md], openlmis-example-extension module README [https://github.com/OpenLMIS/openlmis-example-extension/blob/master/README.md], and openlmis-example service README [https://github.com/OpenLMIS/openlmis-example/blob/master/README.md#extension-points-and-extension-modules].

	Extra Data allows for clients to add additional data to RESTful resources so that the internal
storage mechanism inside a Service doesn’t need to be changed.

	Some features may require both API and UI extensions/customizations. The Technical Committee worked on a Requisition Splitting Extension Scenario [https://openlmis.atlassian.net/wiki/display/OP/Requisition+Splitting+-+Extension+Scenario+Analysis]
that illustrates how multiple extension techniques can be used in parallel.

To learn more about the OpenLMIS extension architecture and use cases, see: https://openlmis.atlassian.net/wiki/x/IYAKAw.

Extension Points

To avoid forking the codebase, the OpenLMIS community is committed to providing extension points to enable anyone
to customize and extend OpenLMIS. This allows different implementations to share a common global codebase, contribute
bug fixes and improvements, and stay up-to-date with each new version as it becomes available.

Extension points are simply hooks in the code that enable some implementations to extend the system with different
behavior while maintaining compatibility for others. The Dev Forum or Technical Committee group can help advise how
best to do this. They can also serve as a forum to request an extension point.

Developing A New Service

OpenLMIS 3 uses a microservice architecture, so more significant enhancements to the system may be achieved by
creating an additional service and adding it in to your OpenLMIS instance. See the
Template Service [https://github.com/OpenLMIS/openlmis-template-service] for an example to get started.

What’s not accepted

	Code that breaks the build or disables / removes needed tests to pass

	Code that doesn’t pass our Quality Gate - see the Style Guide [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md]
and Sonar [http://sonar.openlmis.org/].

	Code that belongs in an Extension or a New Service

	Code that might break existing implementations - the software can evolve and change, but the
community needs to know about it first!

Git, Branching & Pull Requests

The OpenLMIS community employs several code-management techniques to help develop the software, enable contributions,
discuss & review and pull the community together. The first is that OpenLMIS code is managed using Git and is always
publicly hosted on GitHub [http://github.com/OpenLMIS/]. We encourage everyone working on the codebase to
take advantage of GitHub’s fork and pull-request model to track what’s going on.

For more about version numbers and releasing, see versioningReleasing.md.

The general flow:

	Communicate using JIRA, the wiki, or the developer forum!

	Fork the relevant OpenLMIS project on GitHub

	Branch from the master branch to do your work

	Commit early and often to your branch

	Re-base your branch often from OpenLMIS master branch - keep up to date!

	Issue a Pull Request back to the master branch - explain what you did and keep it brief to speed review!
Mention the JIRA ticket number (e.g., “OLIMS-34”) in the commit and pull request messages to activate the
JIRA/GitHub integration.

While developing your code, be sure you follow the Style Guide [https://github.com/OpenLMIS/openlmis-template-service/blob/master/STYLE-GUIDE.md]
and keep your contribution specific to doing one thing.

Automated Testing

OpenLMIS 3 includes new patterns and tools [https://github.com/OpenLMIS/openlmis-template-service/blob/master/TESTING.md]
for automated test coverage at all levels. Unit tests continue to be
the foundation of our automated testing strategy, as they were in previous versions of OpenLMIS. Version 3
introduces a new focus on integration tests, component tests, and contract tests (using Cucumber). Test
coverage for unit and integration tests is being tracked automatically using Sonar. Check the status of test
coverage at: http://sonar.openlmis.org/. New code is expected to have test
coverage at least as good as the existing code it is touching.

Continuous Integration, Continuous Deployment (CI/CD) and Demo Systems

Continuous Integration and Deployment are heavily used in OpenLMIS. Jenkins is used to automate builds and
deployments trigged by code commits. The CI/CD process includes running automated tests, generating ERDs,
publishing to Docker Hub, deploying to Test and UAT servers, and more. Furthermore, documentation of these build
pipelines allows any OpenLMIS implementation to clone this configuration and employ CI/CD best practices for
their own extensions or implementations of OpenLMIS.

See the status of all builds online: http://build.openlmis.org/

Learn more about OpenLMIS CI/CD on the wiki: CI/CD Documentation [https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=87195734]

Language Translations & Localized Implementations

OpenLMIS 3 has translation keys and strings built into each component, including the API services and UI
components. The community is encouraging the contribution of translations using Transifex, a tool to manage
the translation process. Because of the micro-service architecture, each component has its own translation file
and its own Transifex project.

See the OpenLMIS Transifex projects [https://www.transifex.com/openlmis/public/] and the
Translations wiki [https://openlmis.atlassian.net/wiki/display/OP/Translations] to get started.

Licensing

OpenLMIS code is licensed under an open source license to enable everyone contributing to the codebase and the
community to benefit collectively. As such all contributions have to be licensed using the OpenLMIS license to be
accepted; no exceptions. Licensing code appropriately is simple:

Modifying existing code in a file

	Add your name or your organization’s name to the license header. e.g. if it reads copyright VillageReach, update it
to copyright VillageReach, <insert name here>

	Update the copyright year to a range. e.g. if it was 2016, update it to read 2016-2017

Adding new code in a new file

	Copy the license file header template, LICENSE-HEADER, to the top of the new file.

	Add the year and your name or your organization’s name to the license header. e.g. if it reads Copyright © <INSERT YEAR AND COPYRIGHT HOLDER HERE>, update it to Copyright © 2017 MyOrganization

For complete licensing details be sure to reference the LICENSE file that comes with this project.

Feature Roadmap

The Living Roadmap can be found here: https://openlmis.atlassian.net/wiki/display/OP/Living+Product+Roadmap
The backlog can be found here: https://openlmis.atlassian.net/secure/RapidBoard.jspa?rapidView=46&view=planning.nodetail

Contributing Documentation

Writing documentation is just as helpful as writing code. See Contribute Documentation [http://docs.openlmis.org/en/latest/developer-docs/contributeDocs.html].

References

	Developer Documentation (ReadTheDocs) - http://docs.openlmis.org/

	Developer Guide (in the wiki) - https://openlmis.atlassian.net/wiki/display/OP/Developer+Guide

	Architecture Overview (v3) - https://openlmis.atlassian.net/wiki/pages/viewpage.action?pageId=51019809

	API Docs - http://docs.openlmis.org/en/latest/api

	Database ERD Diagrams - http://docs.openlmis.org/en/latest/erd/

	GitHub - https://github.com/OpenLMIS/

	JIRA Issue & Bug Tracking - https://openlmis.atlassian.net/projects/OLMIS/issues

	Wiki - https://openlmis.atlassian.net/wiki/display/OP

	Developer Forum - https://groups.google.com/forum/#!forum/openlmis-dev

	Release Process (using Semantic Versioning) - https://openlmis.atlassian.net/wiki/display/OP/Releases

	OpenLMIS Website - https://openlmis.org

Contribute documentation

This document briefly explains the process of collecting, building and contributing the documentation
to OpenLMIS v3.

Build process

The developer documentation for OpenLMISv3 is scattered across various repositories. Moreover, some
of the artifacts are dynamically generated, based on the current codebase. All that documentation
is collected by a single script. In order to collect a new document to be able to include it in the
developer documentation, it must be placed in the collect-docs.py script. The documentation is built
daily and is triggered by a Jenkins job. It then gets published via ReadTheDocs at http://docs.openlmis.org.
The static documentation files and the build configuration is kept on the openlmis-ref-distro repository, in the
docs directory. It is also possible to rebuild and upload the documentation to Read the Docs manually, by
running the OpenLMIS-documentation Jenkins job.

Contributing

Depending on the part of the documentation that you wish to contribute to, a specific document in one
of the GitHub repositories [https://github.com/OpenLMIS] must be edited. The list below explains where the
particular pieces of the documentation are fetched from, in order to be able to locate and edit them.

Developer docs - Services:
The documentation for each service is taken from the README.md file located on that repository.

Developer docs - Style guide:
This is the code style guide, located in the openlmis-template-service in file STYLE-GUIDE.md.

Developer docs - Testing guide:
This is the document that outlines the strategy and rules for test development. It is located in the
openlmis-template-service in TESTING.md file.

Developer docs - Error Handling:
This document outlines how errors should be managed in Services and how they should be reported through API
responses.

ERD schema:
The ERD schema for certain services is generated by Jenkins. The static file that links to the schema is
located together with the documentation and the schemas itself are built and kept on Jenkins as build
artifacts. The link always points to the ERD schema of the latest, successful build.

UI Styleguide:
The configuration of the styleguide is located on the openlmis-requisition-refUI. The actual Styleguide is
generated by the Jenkins job and uploaded to the gh-pages branch on the same repository.

API documentation:
This contains the link to the Swagger documentation for the API endpoints. It is built by the Jenkins job and
kept as a build artifact, based on the content of the RAML file. The link always points to the API
documentation of the latest successful build.

ERD

Generated OpenLMIS v3 ERD.

	Reference Data ERD

	Requisition ERD

	Fulfillment ERD

	Auth ERD

Reference Data ERD

ERD schema of Reference Data service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-referencedata-pipeline/job/rel-5.0.1/lastSuccessfulBuild/artifact/erd-referencedata.zip]

Requisition ERD

ERD schema of Requisition service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-requisition-pipeline/job/rel-3.1.2/lastSuccessfulBuild/artifact/erd-requisition.zip]

Fulfillment ERD

ERD schema of Fulfillment service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-fulfillment-pipeline/job/rel-xxx/lastSuccessfulBuild/artifact/erd-fulfillment.zip]

Auth ERD

ERD schema of Auth service:

	Zip ERD [http://build.openlmis.org/job/OpenLMIS-auth-pipeline/job/rel-3.0.2/lastSuccessfulBuild/artifact/erd-auth.zip]

Style Guide

The OpenLMIS-UI styles and guidelines are documented in the OpenLMIS Styleguide. [http://build.openlmis.org/job/OpenLMIS-reference-ui-pipeline/job/rel-5.0.0/lastSuccessfulBuild/artifact/build/styleguide/index.html#/] To get a better idea of how the OpenLMIS-UI application and components work, consult the OpenLMIS-UI javascript documentation. [http://build.openlmis.org/job/OpenLMIS-reference-ui-pipeline/job/rel-5.0.0/lastSuccessfulBuild/artifact/build/docs/index.html#/api]

API documentation

Logging in with the Live Documentation

The live documentation links connect directly to our Swagger docs on our CI server. To use the API you’ll first need to get an
access token from the Auth service, and then you’ll need to give that token when using one of the RESTful operations.

Obtaining an access token:

	goto the Auth service’s POST /api/oauth/token [https://test.openlmis.org/auth/docs/#!/default/post_api_oauth_token]

	click on Authorize in the top right of the page

	in the box that has popped-up, enter username user-client and password changeme

	click Authorize under password

	enter the username administrator and password password

	click Try it out!

	In the Response body box, copy the UUID. e.g. "access_token": "a93bcab7-aaf5-43fe-9301-76c526698898" copy a93bcab7-aaf5-43fe-9301-76c526698898 to use later.

	Paste the UUID you just copied into any endpoint’s access_token field.

Auth Service

Security credentials, Authentication and Authorization. Uses OAuth2.

Static Documentation for Auth API [http://build.openlmis.org/job/OpenLMIS-auth-pipeline/job/rel-3.0.2/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html]

Reference Data Service

Provides the reference data for the rest of the processes: facilities, programs, products, etc.

Static Documentation for Reference Data API [http://build.openlmis.org/job/OpenLMIS-referencedata-pipeline/job/rel-5.0.1/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html]

Requisition Service

Requisition (pull) based replenishment process.

Static Documentation for Requisition API [http://build.openlmis.org/job/OpenLMIS-requisition-pipeline/job/rel-3.1.2/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html]

Fulfillment Service

Includes the basics of fulfillment.

Static Documentation for Fulfillment API [http://build.openlmis.org/job/OpenLMIS-fulfillment-pipeline/job/rel-3.0.2/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html]

Notification Service

Notifying users when their attention is needed.

Static Documentation for Notification API [http://build.openlmis.org/job/OpenLMIS-notification-pipeline/job/rel-3.0.1/lastSuccessfulBuild/artifact/build/resources/main/api-definition.html]

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to OpenLMIS’ documentation!

 		
 Developer docs

 		
 Conventions

 		
 OpenLMIS Service Style Guide

 		
 Testing Guide

 		
 Error Handling Conventions

 		
 The License Header

 		
 Versioning and Releasing

 		
 Component Readme’s

 		
 OpenLMIS Requisition Service

 		
 OpenLMIS Fulfillment Service

 		
 OpenLMIS Authentication Service

 		
 OpenLMIS Reference Data Service

 		
 OpenLMIS Service Template

 		
 OpenLMIS Reference UI

 		
 Contribute

 		
 Contributing to OpenLMIS

 		
 Contribute documentation

 		
 ERD

 		
 Reference Data ERD

 		
 Requisition ERD

 		
 Fulfillment ERD

 		
 Auth ERD

 		
 Style Guide

 		
 API documentation

 		
 Logging in with the Live Documentation

 		
 Auth Service

 		
 Reference Data Service

 		
 Requisition Service

 		
 Fulfillment Service

 		
 Notification Service

_static/ajax-loader.gif

_images/header.png
Fap.
=
OpenLMIS

